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Abstract 

This tutorial paper deals with several aspects of basic electromagnetic theory that appear to 
be insufficiently appreciated a century and a half after Maxwell published his well known 
equations and over half a century since the MKS / SI system of units was introduced. New 
concepts have not been completely embraced, while older artifacts and anachronisms have 
lingered on. The main issues include problems stemming from the original theory of 
magnetism, confusion between key aspects of the fields B and H and the somewhat puzzling 
equivalences between characteristically different mathematical models based on poles or 
currents. While the answers to most of these questions are somewhere or other in the 
literature, they are often difficult to find and there seems to be a lack of a consistent 
approach to the fundamentals. This article surveys the problem areas, explores the issues 
involved and attempts to provide clear answers and understanding through reasoning and 
commentary. Only simple mathematics has been used and the treatment has been kept 
strictly in terms of the field quantities. Results and detailed references are given in key areas, 
and the history of the subject is touched on where relevant. 
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1  Introduction 

This tutorial paper deals with several aspects of basic electromagnetic theory that appear to be 

insufficiently appreciated a century and a half after Maxwell published his well known equations and 

over half a century since the MKS1 system of units was introduced. New concepts have not been 

completely embraced, while older artifacts and anachronisms have lingered on. 

The main issues are: 

• The misleading terminology still in use for the magnetic field quantities 

• Definition of magnetic force field in terms of poles 

• Incompatibility between the poles defined in SI and emu/Gaussian systems 

• The inclusion of magnetic poles within the elementary concepts 

• Which of H and B, if either, is the fundamental force field? 

• The casual interchange of quantities such as H, B, µH and µ0H 

• Which of H=µ-1B and B=µH is more consistent with D=εE? 

• The ambiguous vector character of H 

• Why H often appears to take the role of a fundamental force field 

• The correct form and interpretation of the Lorentz force 

• The essential microscopic and macroscopic forms of Maxwell’s equations 

• The mathematical equivalences and differences between solutions based on poles and circulating 

currents 

• Resolution of the apparent incompatibility between field solutions based on curl and divergence 

• Reluctance to employ even simple results from special relativity in establishing the foundations 

• Lack of appreciation that magnetism itself is prima facie evidence for special relativity 

• The need to teach for understanding versus applications and problem solving  

• The benefits of treating electricity and magnetism based on a common footing in Coulomb’s law. 

While the answers to most of these questions are somewhere or other in the literature, they are 

nevertheless difficult to find with any certainty. Treatments vary, and the emphasis may often be on 

mathematical technique and applications rather than understanding. Although modern texts tend to 

take a correct approach, within the literature as a whole a variety of the legacy issues remain. On the 

other hand, no doubt wishing to put them entirely aside, modern works generally make scant reference 

to these problems and so, having stumbled over one, it is often difficult to find a ready answer. In 

addition, there still seems to be scope for clarifying the basic framework of electromagnetic theory, a 

complex and often mathematically difficult subject which nevertheless has truly simple fundamentals.  
                                                      

1 Now the Systeme International, referred to as SI or the SI system. Where we refer to MKS or MKSA, it is in 

the historic context, ca 1935-1960. 
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The objective here, therefore, has been to present reasoned answers to the questions above, and to give 

comment on the issues involved for the benefit of anyone who has an interest in electromagnetics. 

While the comment is intended to be thought provoking, in places it may appear to be just provoking. 

However, it is appropriate from time to time to challenge things that are seen or done in a particular 

way, be it for historical reasons, or because it does not suit a particular view, or simply because a 

better way cannot be agreed upon. 

Only simple mathematics has been used, although a basic appreciation of vector analysis and special 

relativity is unavoidable. Moreover, the treatment has been kept strictly in terms of the field quantities 

so as to avoid introducing other notions, such as potentials, that may well be very useful in their own 

right but simply add another layer to the concepts and techniques that require to be embraced. Once 

the fundamentals are established, such extensions may be safely introduced, which most textbooks do 

accomplish very adequately. In spite of this tutorial approach, every effort has been made to state key 

results precisely and to quote key references wherever possible. The latter task has not been an easy 

one since many results that are commonly accepted today are often not in their original form, and 

many sources give them little or no justification, as we shall see. While the history of the subject is 

very relevant to these issues, within the scope of this article it is only possible to touch on those 

aspects of it that are particularly relevant. The reader may consult the work of Whittaker [1] for further 

information. 

This introduction provides the background and motivation for the article, Section 2 explores the legacy 

issues, while 3 attempts to uncover what may be considered to be the true fundamentals of the subject. 

A review of Maxwell’s equations is undertaken in Section 4, examining the free-space form and 

various macroscopic forms for contrast, including versions which retain magnetic poles. Section 5 

covers some basic results from special relativity – transformation of the electric field, deduction of 

Maxwell’s equations from Coulomb’s law and the invariance of the speed of light in vacuo. Section 6 

presents further discussion, in part drawing some of the topics together and in part introducing some 

further material where comment seems necessary in light of issues that have been raised along the 

way. After a brief conclusion there are two appendices. The first summarizes the essential 

electromagnetic equations as a useful basis, and the second discusses some practical examples from 

electron spin resonance, the Hall effect, and the force on a current carrying conductor in different 

magnetic scenarios. 

Several reference works are cited frequently and therefore wherever possible specific page numbers 

have been given for each instance to make them easier to find. This is fairly essential as in some 

instances the relevant information turns on the use of a single term or symbol. 

1.1 Historical Background 

James Clerk Maxwell effectively established classical electromagnetic theory as a known science by 

completing its mathematical description [2; 3]. Originally, however, there were two apparently 

unconnected theories for electricity and magnetism which, in common with gravity, were held to obey 

an inverse square law. The only distinguishing feature was that the force originated between masses, 
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electric charges or magnetic poles, as appropriate. At the time there was no more idea of a connection 

between electricity and magnetism than, say, for electricity and gravity. Following the observation that 

electric currents could produce magnetic fields, as reported by Oersted [4], Ampere [5] and others 

[6, pp. 91-92], the pursuit of a single integrated theory commenced. If it can be said that Maxwell 

succeeded in taking the final step in this quest, it cannot be said that the full implications of his unified 

theory did a great deal to put aside the original theory of magnetism which, for the purposes of 

magnetostatics at least, persisted.  

The premise that all magnetic fields originate from circulating currents alone (or their quantum-

mechanical equivalent) has existed since the original work of Ampere [6, pp. 97], but in spite of the 

famous and oft quoted conclusion from Maxwell’s second equation, it has never been conclusively 

proved that magnetic poles do not exist. It is, however universally, accepted. Occasional conjecture 

about the possible existence of free poles persists within the field of elementary particles, or special 

states of matter, but nothing corresponding to the original concept has ever been found [7, p.905].  

The non-existence of poles seemed not to deter the proponents of the original magnetic theory. 

Perhaps this was in full knowledge of the facts, on the basis that the useful working model it provided 

was too good to be cast aside. Furthermore, it nicely parallels Coulomb’s law and the mathematics 

involved is simpler than for the interaction between currents. The pole description and the old 

electromagnetic units were consequently allowed to survive. Even in the middle of the last century, the 

effort to introduce the MKS and MKSA systems of units [8; 9 pp. 16-18] did not displace the pole; it 

merely redefined it in terms of forces between currents. Today the old electromagnetic units, emu, that 

are based on pole theory still prevail and the MKS definition of the magnetic pole, while sound 

enough, merely gives undue credence to the pole concept. There appears to be little awareness that 

these magnetic poles are quite contrary to the original poles in key respects [9 pp. 241-242; 10, Vol. 1, 

pp. 179-181], and they have even been referred to as ‘induced poles’ in order to accommodate this 

[11, pp. 5-6]. 

In addition to the undesirable legacy of this process of unifying both of the theories without effectively 

disposing of the outmoded parts, the nature of the magnetic force, being a higher order effect, is more 

complex than that of the inverse square law that suffices for both electric charges and magnetic poles. 

Conceptually we have come to expect symmetry in the electromagnetic equations with H and B being 

on a parallel with E and D respectively [12]. If we did have poles, this would indeed be the case, but it 

is not so. This issue, together with the ‘pole legacy’, leaves us with the different systems of units we 

now have and a persisting misunderstanding - or at least lack of clarity, concerning the magnetic field 

quantities B and H. These sort of issues, some obvious and others subtle, have been carried on through 

the years in definitions, articles, textbooks, and in much conventional teaching on the subject. While 

there are numerous prima facie examples, there are many more where casual usage is simply at fault. 

There appears to be a significant remanent tolerance, even sympathy, for the pole description. For 

example, the magnetic field intensity as defined still refers to H, which is often regarded as the 

primary field, rather than B. In addition, H often crops up in expressions where we might have 

expected to find B, and we still think and write B = µ0(H+M ) rather than H = µ0
-1B - M  On the other 
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hand, there seems to be no similar problem with the use of D and E and we all recognize E as the 

primary field – the force field. 

Putting aside any debate on systems of units, in order not to confuse matters by having two different 

sets of equations, a single system of units has been used throughout this article - SI. 

1.2 What is Fundamental? 

There are a vast number of textbooks dedicated to electromagnetic theory and, being aimed for the 

most part at standard undergraduate courses, these tend to treat the fundamentals as a formality and 

then move on quickly to applications and the build up to Maxwell’s equations and its applications, 

such as propagating waves. For example, Coulomb’s law for the forces between point charges within a 

continuous medium of dielectric constant ε may be simply stated  in the same form as it applies in a 

vacuum with the constant εο replaced by ε  :  

In free space                                                 1 2
12 2
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q q
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rπε

=  (1a) 

In a material of dielectric permittivity ε         
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These equations are often given as a pair of definitions [13, pp. 39 and 44], but of the two, only 

Equation (1a) is fundamental while Equation (1b) may be derived given that it follows from Equation 

(1a) as a direct result of a linear electric polarization induced on the constituent molecules of the 

medium. In this context, the term molecule includes atoms, ions etc., a meaning that we shall adhere to 

throughout this article.  

We must be careful, therefore, to distinguish what is truly fundamental from what is simply 

consequential. As a definition, Equation (1b) is valid only as postulate within a phenomenological 

formulation of electrostatics, that is to say, a description of electrostatics in which we select a set of 

model equations which appears to describe the observed phenomena without further enquiry as to 

whether any of these equations can be derived from other principles. We can also use the terms 

microscopic and macroscopic to differentiate between Equations (1a) and (1b). Equation (1a) is 

termed microscopic, as it applies individually to all charged particles treated as being in free space, 

while Equation (1b) is termed macroscopic, as it involves aggregates of particles treated as a body, in 

other words what we refer to as a medium. The scientific fundamentals are based in the microscopic 

theory from which the macroscopic theory must be later demonstrated in a fully consistent manner. 

In principle, therefore, Equation (1b) can be derived directly from Equation (1a) by means of a 

completely microscopic approach based on the concept of molecular polarisability. The Lorentz-

Lorenz description of dielectric media [14, pp. 89-95; 15 pp. 84-87, 100-104; 16, pp. 150-158] takes 

us as far as relating the dielectric permittivity ε to the molecular polarisability α, which is a measure of 

the extent to which the charge that is bound within the molecule is displaced, or polarized, by the 

presence of a Coulomb force field. The added step is the calculation of the net free-space Coulomb 

force Equation (1b) between the two given test charges together with all of the polarizable molecules 
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affected by their presence. This represents, both in the physics and mathematics involved, a far from 

trivial problem. No doubt it has been tackled at some point, but if so, it is now obscure.  

Such a head-on approach is not essential. The problem can be tackled in stages, following the 

development of other concepts such as the electric field, E, macroscopic polarization, P, and the 

displacement, D. But in many textbooks we would find that Equation (1b) is left to be inferred. At 

some point we would be able to state that, in the presence of a medium of dielectric constant ε, we can 

simply write down D for the single free charge q1, then since E=D/ε, the force on charge q2 must be 

reduced by a factor of ε/ε0 with respect to the force in free space. Happily, this does agree with 

observation. Just as simply, we may infer the replacement of ε0 by ε, say from the energy stored in a 

charged parallel plate capacitor.  But all the same, these methods are a long way around a direct proof 

that the general form of Coulomb’s law in a dielectric medium reduces to Equation (1b). Rather than 

actually prove it, we accept Equation (1b) as given based on its apparent self-consistency with other 

results that fit together to make up the theory. And so it appears to be, as with the development of any 

subject, that key results such as these are contributed in no particular order from a variety of sources 

and over a considerable period of time. For every key result a significantly greater amount of ancillary 

information is generated, filling in the gaps and solving specific applications. Out of this process, 

however, it is useful to keep firmly in mind the bare fundamentals upon which all else depends, e.g. in 

this case Equation (1a) rather than Equation (1b). 

1.3 Difficulties with Phenomenological Models 

That a phenomenological description appears to be correct is no guarantee that this is indeed the case. 

It may behave well as a model, it may be numerically consistent with observed results, but it may also 

provide an erroneous physical description. And so, in a case where we have two or more different 

phenomenological models, where by different we mean more than simply having different 

mathematical representations, it is reasonable to think that only one of them is correct. It is even a 

frequent outcome that none of the available models may be correct, but unless there are very special 

circumstances, it is extremely unlikely that two substantially different models are simultaneously 

correct.  Here, by special circumstances we mean something akin to the wave-particle duality in 

physics where the realization of an equivalence between two characteristically different models 

represents a major conceptual breakthrough in itself. The more usual situation is the search for and 

discovery of evidence in an attempt to confirm a preferred model and eliminate the others, and as often 

as not, different people will have different preferred models! And so here we are concerned with the 

correct physical model for the magnetic field, and not with which mathematical model is to be 

preferred. 

1.4 Understanding versus Problem Solving 

Understandably, since even the modern theory is now quite old, the bulk of textbooks and papers 

published over the last half a century deal with few fundamentals. Generally they give us the 

necessary formulation of the basics for the main tasks in hand, for example numerous applications of 
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the theory and the solution of specific problems. Because of the sheer number of these works and their 

time span, there is a lack of any single seminal work that both fully and accurately encapsulates it all, 

though Elliott [17] is to be commended. Moreover, we are moving into an age where there seems to be 

less interest in doing the ‘hard’ mathematics that fills many an advanced textbook on electrodynamics. 

While the number of people capable of carrying out a tour de force in 3-d vector analysis using 

general orthogonal co-ordinate systems is becoming quite few, on the other hand we now have 

advanced computer software to do the job for us. But the software cannot do the understanding for us. 

At one time we may have confused understanding with mastery of technical detail, but in this new age 

we do have an opportunity to redress the balance. Indeed, if we are going to progress by taking 

advantage of advanced software to solve ever more complex applications, the essentials of a course in 

electromagnetics will lie more in the understanding of the subject and developing a firm mastery of the 

fundamentals. The importance of this is, perhaps accidentally, underlined in a technical note 

accompanying a well-known electromagnetic software package which declared:  

 “Warning: The Lorentz force does not compute the correct force on objects…where µ ≠ µ0" 

Perhaps this was really intended to mean that it was the software package that was lacking in this 

respect, not Lorentz. But just how will that statement be understood by someone who does not have a 

firm grip on the fundamentals? Without the understanding, how can the software be properly applied? 

With a mature subject such as electromagnetic theory, there rarely is the opportunity to reorganize the 

fundamentals and to recapitulate the key results in order to provide a consistent structure that has been 

built up from the foundations, as happened in the 20th century with mathematics. In this article, 

however, we can attempt to revisit a few of the fundamentals in order to illustrate just how important a 

clear understanding of them is. Our approach has been to stay close to the fundamental concepts and to 

minimize the use of ancillary concepts and terminology (even where these may be useful in their own 

right), to use examples to illustrate a point rather than resorting to mathematics, and to explain rather 

than to prove. In particular, we shall attempt to identify and clear up what has become a small legacy 

of conceptual pitfalls and anachronisms. 

1.5 Fundamental but Neglected 

There exists a rarely mentioned proof of something essential to our understanding of electromagnetic 

wave propagation in all matter. Most of us will take this for granted, fundamental though it may be. 

Fortunately, the proof in question is still accessible. It is the Ewald-Oseen extinction theorem 

[15, pp. 84-87] that underpins the theory of propagation of electromagnetic waves in real matter, as 

opposed to theoretical dielectrics. Again, the issue is the difference between the usual 

phenomenological approach and a more fundamental one. The simplest approach based on Maxwell’s 

equations provides a phenomenological treatment of the subject which obviously works in that it fits 

the observations: it shows that waves in isotropic real matter travel as if in vacuo, but with the speed of 

light modified to be εµ/1  rather than 0 01/ ε µ . To most of us, this is so basic what more can there 

be to say? But is it not the case that all we have done is simply to replace ε0  and µ0 by ε  and µ, just as 

in going from Equation (1a) to (1b) ? The model itself guarantees the result simply because the two 
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parameters involved, ε and µ, are arbitrary. The weak point is really to do with the usual pair of 

assumptions, D =εE and B =µH. Are they really applicable to what is going on real matter, as opposed 

to a hypothetical macroscopic medium? 

Pause for a moment, however, to think of the microscopic picture. For example, a gas at normal 

ambient temperature and pressure is only about 0.1% filled with matter. It could be argued that if any 

electromagnetic wave is present it must be propagating in something closer to free space rather than a 

dense array of molecules that we would intuitively treat as a continuum. Where gas molecules are 

present, they interact locally with the electromagnetic wave and so scatter some of it. Each molecule 

sees the incident wave, plus the scattered waves due to all the other molecules, which in this 

microscopic picture both travel in the intervening space at the speed of light in vacuo. How do we deal 

with this and demonstrate that it still agrees with the phenomenological description as a continuous 

dielectric medium that we take for granted?  

Within any medium, be it solid or liquid as well as gas, the microscopic picture is that every 

polarizable molecule scatters some of the driving ‘in vacuo’ wave as a direct result of the time-

dependent polarization that it develops under the wave’s influence. Taken as a collection of individual 

radiators, how does this molecular scattering process come together so that the wave propagates in the 

one well-defined direction with just the expected velocity? This is not a trivial problem to analyze by 

any means, but Oseen [18] and Ewald [19] solved it, for isotropic and crystalline media respectively, 

some 60 years after Maxwell’s development of the phenomenological theory that it supports. 

Effectively they showed that the molecular scattering process generates two new waves within the 

medium, the expected wave, propagating with velocity εµ/1 , and yet another wave propagating 

with velocity 0 01/ ε µ . This latter wave is everywhere equal in direction and amplitude to the incident 

or ‘driving’ wave but exactly 180o out of phase. It therefore completely extinguishes the driving wave, 

allowing it to be replaced by the refracted wave alone, and hence the name of the theorem. This is an 

intriguing picture, which also happens to account completely for the processes of reflection and 

refraction. The theory applies equally to solids and liquids but, importantly, for gases in particular it 

explains how they can behave electromagnetically just as if they were a continuum.  

When we find ourselves in some kind of conceptual quandary over assumptions that we have taken for 

granted, it is to fundamental proofs such as these that we must resort in order to clarify matters. In 

addition, there is the obligation to be perfectly clear on the fundamentals of any subject that we make 

use of in our scientific writing and teaching. The works of Lorenz [20] and Lorentz [21]  and in 

particular Oseen and Ewald may have become neglected because they are detailed and difficult on the 

one hand yet on the other they only seem to confirm more familiar notions that we seem to grasp 

intuitively. This is unfortunate since they should be well remembered as providing an essential basis 

for what we do so much take for granted. They underpin the macroscopic theory, in which matter is 

some kind of conceptual continuum, with a more fundamental microscopic one. The fact that theories 

such as these are ‘difficult’ should not prevent us from giving them their proper place and citing them 

in support of simpler ideas. If we should altogether forget these essential underlying theories, at some 

point we will go astray with the theories with which we are more familiar. 
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1.6 The Main Issue 

As previously stated, the problem that we still encounter in electromagnetic theory is that magnetism 

has two descriptions, one based on poles and the other on circulating currents. Unlike some other 

developments in our understanding of the physical world, say the arrival of theory of special relativity, 

this is not just a question of the new theory extending the old by adding a new layer, as it were. Pre-

relativity theory is still valid, both practically and conceptually, for everyday purposes. Nor is it like 

the wave-particle duality, where we have two apparently different theories which have been found to 

stem from a common root within quantum mechanics. Here we have two different ideas which 

produce similar results but which have certain irrevocable incompatibilities. It is all the more 

fascinating because they are mathematically quite different, yet seem to produce identical results in 

most respects but not all. The newer theory has not fully supplanted the old, and having both theories 

side by side for the best part of two centuries has led to a number of areas of confusion. These, and the 

reasons behind them, are the main thrust of this article, as we shall now examine.  

2 The Legacy 

In this section, we examine the specific issues that have arisen from the historical legacy, including a 

mixture of nomenclature, conceptual problems and casual usage. 

2.1 Referral to H Rather than B in Key Equations 

Within a magnetic field, the equations for the torque ΓΓΓΓ acting on a magnetic dipole m [22, p. 150]  and 

the Lorentz force F acting on a point charge q [22, p. 191] moving with velocity v are given as 

BmΓ ×=  (2) 

( )BvEF ×+= q  (3) 

where B is the so-called magnetic flux density or induction. Misunderstandings over which field 

should be present in these equations, B, or the magnetic field intensity, H, frequently arise in 

published works [23, pp. 262-263; 24, p4.11; 14, pp. 155 and 241; 25, p. 503; 26-30; 31, p. 9.3]. In 

these examples, one sees H used in place of B with no apparent explanation. Some of the reasons for 

the use of these apparently erroneous forms involving H rather than B are discussed below. 

2.2 Expediency 

One of the common reasons for interchanging B and H is simply that a particular equation of interest 

may involve B, say, as a variable. To apply the equation, we need to find B, but instead have an 

expression for H to hand.  Rather than explicitly converting from H to B as an intermediate step, from 

the outset the author simply writes down the original equation in terms of µH rather than B. And so 

we generate an equation such as HmΓ ×=  that can only be correct within a given context (although 

this often goes without mention). 
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2.3 Semantics 

Is Equation (3) effectively a definition of the field B, or is it an equality that is valid only in specific 

circumstances? Therefore, does B here really mean B under all circumstances, or is it just a convenient 

way of writing µH, or even µ0H in vacuo ? This is a common enough issue when dealing with 

formulas in the literature. The context, and the usage that was customary in a particular discipline at 

the time of writing, often need to be known in order to be certain as to the meaning. In the present 

case, we may take Equations (2) and (3) as defining equations, whereas all the forms involving H can 

only be correct in a given context. 

This assertion effectively defines B as the fundamental field giving rise to the magnetic force, and not 

H as originally assumed by the earlier pole theorists.  This, therefore, represents the watershed 

between the modern and historical views of electromagnetic theory. To some, the difference between 

B and µH might seem to be hair-splitting, but not so. Remember that equating the two is only a special 

case that applies when a linear relationship may be assumed. It certainly does not apply in the presence 

of permanent magnetization, in which case B and µH may even be more or less in opposite directions, 

as shown in Figures 8b and 8c, later in the article.  

2.4 Casual Usage 

Problems sometimes arise out of a familiarity with the subject which causes inconvenient detail to be 

glossed-over, or from taking an over-casual approach with concepts and nomenclature. Provided the 

treatment has been self consistent, the end results in such circumstances are often still factually 

correct, given that the author will have taken the trouble to confirm them before publication. 

Nevertheless, since understanding is likely to be impaired and intermediate steps may be technically 

wrong, or at least open to doubt, casual usage is not to be condoned.  

2.5 Unhelpful Nomenclature 

Notwithstanding the modern view that poles do not exist, H is still termed the ‘magnetic field’ or 

‘magnetic field intensity’ while B is referred to as the ‘magnetic flux density’ or ‘magnetic induction’. 

Even prior to 1890, Heaviside expressed doubts about the use of the term induction [10, Vol. 2, p27], 

while even now it may be read as describing induced rather than primary effects. In free space this 

choice of B or H makes little difference, effectively only a difference of units in the SI system, but 

nevertheless it gives rise to confusion because it retains the suggestion that H, rather than B, is the 

primary field associated with the magnetic force. Kraus [32], refers to both B and H alike as the 

magnetic field, perhaps in a genuine attempt to avoid the issue. 

In spite of the concept of poles as such being obsolete, we still use the term in order to identify the 

sense of magnetization, i.e. north and south poles. Similarly, even though we know that an actual 

current may be due to a flow of negative electrons, we still retain the concept of a conventional 

positive current flow in the opposite direction. However, without referring to poles per se, we can still 

choose to define the north pole of a current dipole as being the face from which the direction of B 
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emanates and the south pole as being the face on which it enters [33], with the right-hand screw rule 

relating the direction of B to the direction of circulation of the current. It is interesting to note that 

without the benefit of magnetism based on currents, we could only distinguish the north and south 

poles of a polar dipole by means of a reference dipole, and in fact the earth itself provided the original 

reference dipole as well as the terminology of north and south poles. The root ‘pole’ is now embodied 

in terms such as dipole, polar etc. It derives from polus, meaning the end of an axis, and in the context 

of a magnet the reference to the poles of a magnet is quite valid if we mean the where its axis of 

magnetization cuts the surface. It would make no sense, therefore, to try to eliminate or replace the 

word pole or the terms north and south pole as means of identifying the ends of either a magnet or an 

elementary dipole. 

2.6 Confusion between the Roles of B and H 

Putting nomenclature, semantics, customs and casual usage aside, a good deal of confusion about the 

respective roles and characters of B and H is evident. Many authors have in the past drawn analogies 

between D and B on the one hand and between E and H on the other [24, p. 4.11; 7 p. 496; 34]. The 

modern view, however, is that, if anything, B parallels E while H parallels D [22, p. 153; 

9 pp. 12 and 242]. This assertion, however, requires careful qualification which we will address in 

Section 2.9 below. 

2.7 Does H Apply to Magnets While B Applies to Currents? 

Even a theoretically correct discussion on the equivalence of magnets and currents, as given by 

Kitaigorodsky [35], poses questions. Is it the case that H applies to magnets while B applies to 

currents? Indeed, we may suppose that such a view was held for some time, but, as we shall see later 

in Section 6.2, it cannot be valid – indeed if it were there would be some surprising results. 

2.8. Different Systems of Units 

2.8.1. Interchange of B and H in the Gaussian and emu systems 

The different systems of units often take the blame for problems, if only for the fact that the most 

misleading examples tend to occur when the units of B and H are dimensionally identical (i.e. where 

µ0 is dimensionless). It is of little help, and perhaps only more confusing, when the units are identical 

but have been given different names, such as the oersted and gauss. The numerical equality of B and H 

can make the casual practice of interchanging them all too easy. Doing this to simplify a calculation is 

one thing but, as previously discussed, replacing the one with the other in a defining formula is quite 

another. Not only can the occurrence of such ‘context sensitive’ formulas be a source of annoyance to 

those unfamiliar with the practice, it can certainly give rise to genuine misunderstanding.  



© IEEE 2008,  Antennas and Propagation Magazine, Volume 50, No 1, February 2008   

2.8.2.Definitions Based on Poles 

Undoubtedly, one of the main problem issues is the continuing use of the old terminology and 

definitions [13, pp. 38-41] that is associated with the emu. In spite of the fact the use of these is 

deprecated by the major technical bodies such as the IEC and IEEE, they still persist mainly through 

their use within the Gaussian formulation of the electromagnetic equations. For example, the oersted, 

the unit of magnetic field intensity, may still be found defined in terms on the force on a unit magnetic 

pole [13, pp. 38-41, 36].. It could be argued that such a unit pole can still be defined as a notional 

thing, but as discussed in Section 2.8.4 below, this type of unit pole cannot be consistent with a unit 

pole defined from forces between currents, as would now be required.  There are similar problems 

with the definition of magnetic flux in maxwells, which derives directly from the definition of the 

magnetic field intensity, H, whereas in the SI system flux is inherently defined through the magnetic 

induction, B. These inconsistencies arise simply because the original pole concept is retained within 

these systems of units. While modernized definitions do exist, e.g. the oersted given in terms of the 

field of a current rather than that of a pole, these no longer have the authority of official recognition 

and have done little to supplant the older definitions. 

The magnetic potential [13, pp. 38-41; 7 pp. 470-471], seems to be a concept which has survived 

poles. The electrical potential difference, ∫ ⋅=
b

a

e
abV ldE  readily gives the work e

abqV  done in moving 

a charge q from a to b through the electric field E. On the other hand, what does the analogous concept 

of magnetic potential difference ∫ ⋅=
b

a

m
ab HV ld  give us without poles to be moved along the path? No 

doubt some interpretation may be found, as in the definition of magnetic reluctance where the need for 

poles is no longer apparent, but the point is that the definition itself tempts us to think of H like E in 

terms of a force field and leads some authors to refer to moving actual poles around a path [11, pp. 259 

and 262]. 

2.8.3 Lack of Adherence to a Single System of Units  

Notwithstanding the conceptual difficulties caused by retaining emu and other related CGS systems of 

units, there are the practical considerations. For years it has been necessary to do battle with (at least) 

two separate systems of electromagnetic units and, as a consequence, differing forms of equations. 

Many textbooks give two sets of equations or translation tables, some deliver lengthy 

recommendations of one system over the other, often advocating one for aesthetic reasons while 

saying the other is practical and for the convenience of engineers [37; 9, p. vii; 22, p. 621].  

Such arguments are specious. While SI has been adopted as the ‘preferred’ system, the fact is that emu 

terms and units abound in the literature and can hardly be ignored. The critical issue, however, is not 

the inconvenience of conversion factors, rather it is the old concept of magnetism which is still 

allowed to survive through the older definitions employed within emu. Unfortunately, as we have just 

discussed, this link with the old ideas often results in confusion about the basics, not just the units.  

24 
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2.8.4 Inconsistency between emu and SI Poles 

In isolation, the magnetic pole description provides a practical means of determining H in 

magnetostatic problems involving permanent magnets provided that we are able to specify the 

distribution of magnetic poles. The main difficulty lies in making this consistent with the modern view 

of magnetism produced by currents. In order to do so, the unit pole must be considered as induced [9 

pp. 241-242; 11 pp. 5-6], rather than absolute. This is necessary simply because the pole distribution 

does not lead directly to B. One is first effectively determining the field H from the poles and then 

finding B as a result. The force between poles must depend on B in order to be consistent with the 

circulating current approach. Therefore, if we have BpF =  for the magnetic force2 in place 

of pHF = , then we must have HpF )(µ= , so that pp µ= . The original pole is p while the so-called 

induced pole is p , although we could argue that this should be stated the other way around. 

In an attempt to bring over the pole concept into the then MKS system, a definition for poles and a 

Coulomb’s magnetic law was included [13, pp. 40-41 and 43], but in contrast with the original emu 

definitions, these are based on the modern view, i.e. induced poles. The problem is that both the poles 

involved and the force laws are incompatible. 

This anomaly can be examined by comparison of their definitions in terms of the inverse square law  

1 2
12 2

12

1 2
12 0 2

12

                    EMU

           MKS
4

r

r

p p
F

r

p p
F

r

µ

µ µ
π

=

=
  (4) 

One can see that µr, the dimensionless relative permeability of the intervening medium, appears in the 

denominator of the one form and in the numerator of the other. This is not just a mathematical 

difference – it was the borrowing of the original Coulomb force concept that was ill founded. As we 

shall explain in Section 3.2.4 below, the force between poles should increase as the material 

permeability increases, and not, as the early theorists held, the other way around. Had they but known 

this fact then they would no doubt have questioned the assumption of a direct parallel with the 

Coulomb field. With the same model at heart, the result cannot be one thing for the electric field and 

another for the magnetic field. As Stratton comments [9, p.239], “the properties of magnetic matter 

can be described more naturally…without fictitious ‘magnetic charges’ ”. Indeed, it should now be 

said that the continuing existence of the older notions is quite undesirable from the standpoint of 

having a clear and consistent approach to the basics. We should no longer cling to them for purely 

historic reasons or as conveniences, but even the technically consistent representation of poles in the 

MKSA system only helps to prolong the concept. Poles no longer exist in SI, and those who still favor 

the notion of poles probably do so by their longstanding association with the emu system. 

                                                      
2 In this context we can use poles with the field B provided we mean by a pole the positive half, 

mathematically speaking, of a real magnetic dipole. See Section 2.9.3. 

 



© IEEE 2008,  Antennas and Propagation Magazine, Volume 50, No 1, February 2008   

2.9 Fundamental Field and Auxiliary Field 

2.9.1  B is the Primary Field Associated with Magnetic Forc e 

In a nutshell, the problem we are addressing stems from the original magnetostatic concept that the 

magnetic force field is defined in terms of H [38, p159], whereas it is now accepted that B is the 

fundamental field [22, p153; 9, pp. 12 and 242, 16, p. 157; 39, p. 17; 40]. and that it is the origin of the 

magnetic force, as stipulated in the correctly stated Lorentz force F = q(E + v×B), Equation (3). As 

we have already discussed, H was defined as a force field in a manner paralleling E, with the electric 

charges being replaced by magnetic ones, called poles. The description of magnetism always tends to 

be more complex than electricity, and in keeping with this we cannot simply rectify the situation by 

calling B the magnetic force field, or similar, because  

•••• the force generated is not even parallel to B, and 

•••• B is an axial vector and not a true vector [41, pp. 39-40] (see Section 2.9.2). 

But neither should we fudge the issue and say that H is the force field. It may have an interpretation as 

an analogue of a force field, e.g. within in the expression ∫H ⋅⋅⋅⋅dB for energy density [7, p. 494] and the 

dubiously defined magnetic potential ∫H⋅⋅⋅⋅dl discussed in 2.8.2 above, but not as the fundamental 

magnetic force field.  

2.9.2 Ambiguous Real versus Axial Nature of the Mag netic Field Vectors 

A true vector, also sometimes called a real vector or polar vector, is inverted if the co-ordinate system 

is inverted, i.e. (x, y, z) → (-x, -y, -z). Examples are force, position and velocity.  On the other hand, a 

pseudo-vector, also referred to as an axial vector, is not inverted. Examples are torque and angular 

momentum. The cross product of two vectors of the same sort is an axial vector, while for different 

sorts it results in a true vector, and multiplication of any vector by a scalar does not affect its type. The 

field E is related to force by a simple scalar factor (charge) and so we can readily regard it both as a 

true vector and as a force field. There is objection, however, to referring to B as a force field since B is 

not a true vector and cannot therefore directly represent a force. But in fact an equal difficulty applies 

to H. Were H to be defined analogously to E, as in the original concept of magnetism, then it would 

indeed be a true vector. But because H, B and M  (see Section 2.12.4 below) all require to be 

compatible, they must all be either true or axial vectors, otherwise linear combinations of B, H and M  

would be neither axial nor polar in general. As a particular example, we could not write, as we so often 

take for granted, B=µH with µ being a simple scalar. There is no longer any argument about B being 

an axial vector3, and consequently all three magnetic field quantities must be axial vectors. This result 

                                                      
3 To see this, consider the field B generated by a current in a circular loop of wire centred on the origin. A charge 

at position r on the loop has velocity v, say. On applying an inversion, r→ -r  and v→ -v. That is to say, the 

charge now has the opposite velocity but is on the opposite side of the loop. It is therefore continues to go round 

the loop in the same direction leaving B unaltered. 
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is completely consistent with Maxwell’s equations, Equations (20), with J being taken as a true vector 

based on its equivalence to a flow of charge4, ρv, where ρ is a scalar. Note that J is sometimes taken to 

be an axial vector by identifying its vector character with the normal to an infinitesimal element of 

surface through which a positive scalar current passes. In this case, applying an inversion leaves J 

unchanged so that H requires to be a true vector. The latter definition is therefore to be avoided in 

general, but see Nye [41, p. 54] for a full discussion. 

Taken on their own, however, whether M  and H are axial or polar simply depends on how they are 

defined. If they are defined based on poles, they must be polar. If they are defined based on circulating 

currents then, like B, they must be axial. Retaining a field H that is polar rather than axial may be 

consistent with being able to use it to represent a force field, but in a world without poles this is purely 

artificial. To do so simply provides an operational model which can be used to simplify analysis rather 

than a physical model which, although less convenient, more truly reflects nature. We cannot say that 

B is a force field in the proper sense, but neither can we say that H is, except in a restricted operational 

sense. Importantly, and as we shall subsequently reinforce, it is the field B rather than H that is, under 

all circumstances, directly associated with the Lorentz force - but this is nothing to do with the 

characters of B and H being axial or polar.  

2.9.3 Definition of Magnetic Force Field without Po les 

As explained in 2.8.2, the use of poles to define the magnetic force field is still extant in emu [13, 

p. 40]. But we must recognize that in reality there are no poles. Moreover, B rather than H is the origin 

of the magnetic force, even though we cannot truly refer to B itself as a force field in the usual sense 

(2.9.1 and 2.9.2 above). It is still a problem that the old pole concept of magnetism is easier to grasp at 

a basic level. It would be helpful if the true position could be restated in some simpler way without the 

notion of poles per se. Certainly, we can still visualize a magnetic ‘force field’ based on the alignment 

of an infinitesimal permanent magnetic dipole or current loop rather than the force exerted on a 

conceptual pole and whenever we refer to this meaning we shall use the quotation marks. As there 

never has been the possibility of using free poles in an experiment to measure magnetic field strength, 

the original method, due to Gauss [38, p. 160-161], was in any case based on the use of a test dipole. 

This is still valid for present day purposes as in the real world the behavior of any isolated test dipole 

is unaffected by the model we choose for it. As before, the orientation of the dipole gives the field 

direction, while the torque required to displace it from this orientation by a given small angle is a 

measure of the field strength. When we later refer to a magnetic ‘force field’, this is exactly what we 

shall mean. At this stage, this definition could apply either to B or H, and in a vacuum there could be 

no discernible difference. We shall, however, deal with the critical case that applies within a magnetic 

continuum in Section 3.2.4. 

                                                      
4 The term convection current is sometimes used in this context. It would seem to indicate that the current flow 

involved is solenoidal, e.g. as in an eddy current, rather than flowing from a source to a sink. 
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2.9.4 Primary and Auxiliary Fields Defined 

As a way round the joint problems of unhelpful nomenclature and identification of actual ‘force 

fields’, the terms primary and auxiliary fields are helpful. Both B and H appear in Maxwell’s 

equations, which we will come to in due course. One of the two can be held to be the fundamental, or 

microscopic, quantity which will always be required in free space, while the other is introduced as an 

auxiliary field [39 p. 18; 42], which is only genuinely required to describe the macroscopic effects 

arising in magnetic materials. If H were the original force field that applied before the introduction of 

magnetic matter, then B would be the auxiliary field that allows the description of magnetic materials, 

or vice versa.  

While the situation with the electric field is similar, there is no such confusion. E is, and always has 

been, the fundamental force field, or microscopic field, while D is purely an auxiliary field that allows 

for the macroscopic description of dielectric materials.  

However it was that B came to be originally defined, nowadays it is recognized that it does represent 

the origin of magnetic force. Consistent with this standpoint, it is also appreciated that magnetic 

effects originate from circulating electrical charges, as originally conceived by Ampere [5, 6] and 

asserted by Maxwell [3, Vol. 2, p275], or by their quantum equivalent, rather than from the completely 

separate original concept of magnetic charges, or poles. We shall see in Section 4.2 that, more 

generally, Maxwell’s equations can be arranged in terms of the fundamental fields E and B alone, to 

form the basic microscopic equations, with D and H being brought in through so-called constitutive 

relations in order to describe the effects of matter. In doing so, the important step is the identification 

of magnetic fields with circulating currents alone. 

2.9.5 Summary of the Characteristics of the Field V ectors 

Table 1 summarizes the main properties of the field vectors. H is a force field only if we consider a 

Coulomb theory of magnetism with poles. It then must also take the character of a true vector, rather 

than an axial one, which is no longer consistent with the character of B. Although it originates a force 

for moving charged particles, B is not a force field per se for reasons explained in 2.9.1 and 2.9.2 

above.  

Table 1: a summary of the key characteristics of the field vectors 

Property E D B H 

Fundamental field (origin of forces as in the Lorentz force) �  �  

Auxiliary (required to account for macroscopic media on the basis of free 

charges and currents alone) 
 �  � 

True Vector � �   

Axial Vector   � � 

Actual Force Field �    
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2.10 Special Relativity 

2.10.1 Origins of Magnetism within the Theory of Sp ecial Relativity 

It is now understood that magnetism arises naturally as a basic result of the theory of special relativity 

in which the magnetic field emerges out of the need to describe the observed electric force between 

moving charges. Just like the original Coulomb’s law, it gives the force between particles directly, but 

now we must also take into account the particle velocities. The result agrees with the equation for B 

derived classically from Ampere’s force law, Equation (11) below.  Furthermore, the result for the 

transformation of the electric field, E, given for example by Jackson [22, pp. 380-382], agrees with the 

Lorentz force, Equation (3). 

The satisfying outcome is that special relativity effectively yields the Lorentz force without any a 

priori  need to prescribe the separate concept of a magnetic field. The Lorentz force therefore defines 

the magnetic field. 

It is clearly quite difficult at the earlier stages of teaching electromagnetic theory to get this point 

across except perhaps in the mention, but on the other hand this does not prevent us from keeping the 

information imparted as consistent as possible with this cornerstone of the theory. By the stage that 

some of the basic results of the theory of special relativity have been appreciated, students would be in 

a position to make the connection between Coulomb’s law and the magnetic field.  In Section 5 below 

we examine how the basic results can be applied to some illustrative cases: transformation of the 

electric field, Faradays law of induction and displacement current, and finally, the universality of the 

speed of light in vacuo. 

2.10.2 Significance of Magnetism in the Theory of S pecial Relativity 

Text books on special relativity usually cite a familiar list of ‘relativistic corrections’ which have been 

duly confirmed experimentally, furnishing evidence in favor of the theory. In some of these books, 

magnetism is then shown to arise as a consequence of the theory, but very few, if any, ever mention 

magnetism as being the only basic evidence for the theory of special relativity that we can observe in 

everyday situations. All relativistic ‘corrections’, being typically of order (v/c)2, are very small at 

ordinary velocities. Here v is the velocity of, say, a moving particle or other frame of reference, and 

by ‘ordinary velocities’, we mean velocities such that v/c is no greater than about 10-5. The key 

difference that makes magnetism so readily observable at ‘ordinary’ velocities is that while the electric 

force between bodies filled with electrically neutral matter vanishes, the relativistic correction does not 

do so when they maintain a current. The magnetic force can therefore be observed quite readily when 

it is not masked by the presence of a net electric force which would be many orders of magnitude 

greater. While we can indeed encounter very large magnetic forces, this is due to the fact that the 

underlying electric forces, if unbalanced, would be quite enormous by comparison! 

A much more subtle point is that Ampere’s force law, Equation (11), does not obey Newtonian 

relativity as the forces exerted by one infinitesimal current element  (or moving charge) upon another 
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are not generally equal and opposite. This can be readily seen from Equation (11) for the case of two 

current elements, one parallel to the spatial vector r 12 separating them while the other is perpendicular 

to it. The force acting on the perpendicular element is zero while the force acting on the parallel 

element is not, so that they evidently cannot be equal and opposite. To an observer at rest, therefore, 

there is a nonzero net force acting on the pair even in the absence of any external influence. How well 

forgotten is this inconvenient fact! Inconvenient, though, only because its explanation draws us into 

special relativity, something all but advanced textbooks on electromagnetic theory generally seek to 

avoid. 

Surprising as this kind of behavior may seem even today, the whole supposition that the force between 

charges varies with their velocities flies in the face on Newtonian relativity, as we can make the forces 

come and go depending on the motion of the observer. The variable element, the magnetic force, is 

therefore at the very heart of special relativity and not just one of the consequences of it. 

2.10.3 Magnetism as Evidence for the Theory of Spec ial Relativity? 

Magnetism is has been part of the everyday world for centuries. It is in fact so commonplace that we 

do not even recognize it as evidence for the theory of special relativity, like Monsieur Jourdain in 

Molière’s play [43], who was greatly surprised, and impressed, to discover he had been speaking prose 

all his life. The main evidence generally cited in support of special relativity is the Michelson-Morley 

experiment together with the aberration of starlight pointing to the constancy of the speed of light and 

the absence of an ether, and Fizeau’s experiment on the speed of light in moving liquids (see Section 

5.4 below). In view of what we have just discussed in the preceding section, it is a pity, therefore, that 

we rarely see statements such as: 

Because we know that magnetic poles do not exist, magnetism must be explained in terms of 

existing forces. Since the theory of special relativity applied to the electric force would give 

rise to a force identical to the magnetic force, we must consider the observation of 

magnetism as prima facie evidence supporting the theory of special relativity. 

Rather, we see it stated the other way round, with magnetism being treated as an application rather 

than being placed along with the other evidence. This, however, is simply part of the legacy, a result of 

how the subject developed.  

2.10.4 Issues Arising from Advanced Relativistic Th eories 

We must, however, be quite careful when we move away from these basics. Special relativity and 

general relativity have been applied to a wide range of problems including electrodynamics. In 

relativistic formulations [9, pp. 71-72; 11, pp. 384-385], the use of tensors such as FFFF, which combines 

E and  B, and GGGG, which combines D and H, to describe fields changes little about the characteristics of  

E, B, D and H themselves.  

The main issue here is that there are variants on this formulation in which E and H are combined as a 

tensor, and H is used in place of B in the Lorentz force [44]. While within a particular representation 
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this may stem from convenience rather than necessity, it hardly serves to promote clarity and 

understanding about the basic roles of the four electromagnetic quantities. In some ways it may seem 

justified to use H as a force field like E, but it is not consistent to do this within the Lorentz force, 

which involves moving charges rather than magnetic poles.  

While this may present little problem for experts in the more advanced formulations of relativistic 

electrodynamics, the rest of us must exercise caution in interpreting the roles played by B and H in 

these special contexts. 

We will return to special relativity in Section 5. 

2.11 Are Magnetic Poles Completely Redundant? 

An approach consistent with the modern view does not require magnetic poles, and so neither does it 

require any alternative description for the magnetic ‘force field’. Although it should now be regarded 

as largely historical, the pole description is intriguing in that it may still be applied to magnetic 

problems and, with due care, it does achieve the correct results. But we must be clear that it does not 

give the correct conceptual picture. It works on its own but not within electromagnetics as a whole, 

and so we should really avoid using it as a basic introduction to the subject. It is misguided to think 

that poles will help understanding when later we have to alter the description to conform with an 

entirely different picture. In a sense, the pole is the ‘flat earth’ of electromagnetic theory – we can 

readily work with poles as a means to an end, but we should not confuse them with physical reality. 

Despite being physically invalid at the fundamental level, the pole description can be placed on a 

sound mathematical basis, as shown in Section 4.2. In fact its main value, if any, would appear to be as 

a mathematical simplification over the circulating current theory of dipoles. As we shall later see, 

Section 3.2.1, the interaction between current dipoles is considerably more complicated and far less 

intuitive than the interaction between individual poles. This kind of situation is not uncommon, but it 

is an intriguing fact that there are many respects in which mathematical pole-based description appears 

to be fundamentally at odds with the circulating current description, yet it still seems to give 

equivalent results. We shall return to this puzzle in Section 6. 

2.12 Real Matter and the Constitutive Relations 

2.12.1 Microscopic versus Macroscopic 

Within what we may term a microscopic basis, interactions between all the particles present in any 

system under consideration must be accounted for explicitly. This is applicable to situations where we 

are dealing with given charge and current distributions in vacuo. On the other hand, by a macroscopic 

basis we mean that we have matter present, giving rise to unknown distributions of charge and current 

that require to be determined from knowledge of their interaction with the known ones. In this 

macroscopic picture, matter is most easily characterized as being a continuous homogeneous medium 

rather than having a detailed microscopic structure. The microscopic structure can be dealt with 

separately, for example, in order to relate the macroscopic properties of the medium to the properties 
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of its basic ingredients on the atomic or molecular scale, as in the Lorentz-Lorenz model referred to in 

Section 1.5 above. 

2.12.2 Real Media 

Real media contain charges that are bound to molecules5. In the quantum mechanical description, 

charges may also have an associated spin that carries an equivalent magnetic dipole moment, and even 

in the semi-classical atomic description, charges can move in orbits giving rise to net magnetic dipole 

moments. The influence of externally applied electric and magnetic fields causes charge and current 

on the microscopic scale to be subjected to the Lorentz force, Equation (3) above. This in turn causes 

forces and torques on the molecules or ions to which they are bound, and the resulting motion is a 

problem in mechanics. Generally, a linear model for the displacements, or polarization, suffices. The 

displaced ions and molecules in turn give rise to their own contributions to the field affecting them, 

and so the whole problem of finding the actual field for a given applied field must be solved self-

consistently, as in the Lorentz-Lorenz model. Within a real medium, therefore, the local field values 

that provide the forcing term driving the equations of motion are quite different to both the externally 

applied field and the average macroscopic field within the medium, that is, the field that pertains when 

we treat it as though it were conceptually a continuum.  

2.12.3 Free and Bound Quantities 

The terms free and bound may have valid connotations of distinguishing, say, charge that is bound 

within some matter from charge that is entirely separate and therefore free from any other matter. But 

the real significance of these terms is that free quantities represent the independent, or explicit, 

variables in a system, the sources, while the bound quantities are generally the dependent, or implicit, 

variables. Bound quantities are entirely associated with the macroscopic picture, whereas in the 

microscopic picture all quantities must be considered as being free. 

2.12.4 The Electric and Magnetic Polarizations 

On a macroscopic scale, the quantities P and M , which are the electric and magnetic polarizations per 

unit volume respectively, have been defined so as to describe the average instantaneous displacement, 

or polarization, of the bound charges and magnetic dipoles6. In the macroscopic context, P and M  are 

fundamental in the sense that we can relate them directly to the individual molecular electric and 

magnetic dipole moments, p and m, which certainly are fundamental at the molecular, i.e. 

microscopic, level.  Furthermore, since P and M  prescribe the electric and magnetic dipole 

distributions, they are associated with electric and magnetic fields respectively, and we can determine 

                                                      
5 As before, we include ions and atoms within ‘molecules’. 

6 Here displacement also includes any dipole rotation. Note also that while the term magnetic polarisation 

literally means the magnetisation, M , in some places, e.g.IEC60050 IEV 121-11-54, it is taken to be µοM  with 

the symbol J (also used for current density!). 
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these directly from the given distributions. While in principle the introduction of P and M , together 

with the historically defined free-space quantities E and H, are all that is required in order to take 

account of media other than free space, two additional macroscopic quantities, D and B were 

introduced and defined as 

( )
0

0

ε
µ

= +
= +

D E P

B H M
 (5) 

The motivation for this was that D is analogous to E but is associated with free charge alone, as in ∇⋅D 

= ρfree , while ∇⋅E = ρtotal . The equations ∇⋅B = 0  and ∇⋅H = Π , where Π  is the density of poles, was 

seen as a direct counterpart of the electric case, given that  Πtotal can be written simply as Π  since 

there are no free poles. But, there are no poles whatsoever, and the introduction of equations for 

magnetic quantities simply on the basis of paralleling the electric ones is physically wrong, even if 

mathematically justifiable. We shall show a different rationale below that avoids poles altogether and 

is based on B being the primary magnetic field.  

2.12.5 H as the Dependent Variable 

The so-called constitutive relations started out in the form of Equations (5) above with D and B as the 

dependent variables and with the magnetic form being the complete parallel of the electric one, 

allowing of course the trivial difference that the counterpart of P is taken as µ0M rather than M , which 

is simply a matter of definition. 

If we reverse this picture, as in the modern description where H depends on B rather than the other 

way around. Somewhat annoyingly, the associated magnetic constitutive relations as in Equations (6) 

below no longer parallel the electric ones. In terms of H being the dependent variable, the appropriate 

form of the constitutive relations is: 

0

0

ε

µ

= +

= −

D E P

B
H M

 (6) 

Some authors, wishing to draw attention to the point, do introduce these forms of the equations 

[30, pp. 18 and 27; 22, p. 153; 45, p. 276] but they revert to the original forms which are still 

commonplace since they seem to be intuitively more acceptable. First of all, this may be because of 

the temptation to have the two sets of equations in a ‘neat’ parallel form. Secondly, it is hardly 

intuitively obvious why the auxiliary magnetic field, as we shall now refer to H, should appear to 

reduce with increasing magnetization of the medium, while the D, the electric displacement, or 

auxiliary electric field, increases along with the degree of polarization.  

As we shall see in Section 4, the true comparison with ∇⋅D = ρfree and ∇⋅E = ρtotal is not ∇⋅B = 0  and 

∇⋅H = Π , but rather, ∇×B = Jtot  and ∇×H = Jfree , where J is current density. This requires no poles 

whatsoever, and it is clear that any comparison with the electric equations is on a basis that allows for 

the different vector character of the magnetic field quantities and for vector rather than scalar sources. 
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Unfortunately, Equations (5) rather than Equations (6) are generally still taken as the basic form, in 

spite of the outmoded description of the magnetic quantities that this reflects. 

2.12.6 The Linear Description of Media Is Not Funda mental 

With simple linear relationships between induced and applied fields, Equations (5) become  

HµB

EεD

⋅=
⋅=

 (7) 

or, as they may be written to better reflect the modern view as expressed by the form of Equations (6)  

BµH

EεD

⋅=

⋅=
−1

 (8) 

The proposition of linear relationships as in Equations (7) or (8) is not of itself fundamental and is 

only required in order to allow the straightforward solution of a great number of common physical 

problems, such as wave propagation in a given medium. When εεεε and µµµµ are simply scalar constants, 

with ε and µ both, in the main, being close to or greater than unity, the older forms in Equations (7) 

somehow seem more amenable [22, p153 (footnote)]. This is simply one more convention that makes 

us tend to see a parallel between E and H. Most of us are not quite at ease with routinely writing 

instead H=µ-1B, although there is no logical reason why we should not do so. 

2.12.7 The Definitions of D and H are not Simply Arbitrary 

It could be said that the definitions of the auxiliary fields D and H are arbitrary, but this is not the case. 

One could also ask why they are necessary at all, given that P and M  are more fundamental quantities 

which, for example, the Ewald-Oseen approach employs directly without any recourse to D and H. 

The answer to this question lies first of all in the fact that the use of B, E, H and D allows Maxwell’s 

equations to be written in a form that depends only on free sources of charge and current, rather than 

all sources including the bound ones. A secondary but useful point is that these four fields all obey 

specific boundary conditions whereas M  and P do not.  

2.12.8 The Boundary Conditions 

The combination of the four boundary conditions, as represented in Figure 1, allows straightforward 

solutions to some common problems, such as the transmission and reflection of electromagnetic waves 

at a plane interface. In general, they may be stated as 

021
//
2

//
1

21
//
2

//
1

=−=−

=−=−
⊥⊥

⊥⊥

BB

DD

free

free

       

              

KHH

0EE σ
 (9)  

Here the superscript ⊥ refers to a component perpendicular to the interface, while // refers to the part 

of the vector that is parallel to it. The symbol σfree represents the density of free surface charge, Cm-2, 

while K free is the density of surface current, Am-1. It should be noted, however, that these four 
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boundary equations are only special cases of each of Maxwell’s four equations, but while they may 

add nothing new in themselves, they do underline the usefulness of the choice of vectors. 

Somewhat intriguingly, the boundary conditions for D and B appear very similar, as do those for E 

and H. The former conditions both involve only the parallel components whereas the latter involve 

only the perpendicular parts. So once more, if we are not on our guard we may draw the wrong 

conclusions as to parallels between the vectors. The truth is that these components are associated with 

the particular field vectors because in Maxwell’s equations ∇×E and ∇×H are involved in the one set 

and ∇⋅D and ∇⋅B in the other. Looking at it another way, though, the conditions for E and B are both 

homogeneous, while those for D and H involve free sources, and this is actually how the physical 

parallels should be drawn. 

A comparison of the key boundary condition properties of the four field vectors is shown in Table 2. 

 

 

B⊥ B⊥ 

E⊥ E⊥/ε’ 

B// 
µ’B// 

E// E// 

ε1 
µ1 

ε2 
µ2 

⊥⊥⊥⊥ 

////////    

 

Figure 1 : The boundary conditions for E and B at a charge-free plane interface. On opposite 

sides of the interface we have media 1 and 2, where ε′ = ε2/ε1 and µ′ = µ2/µ1 . Both D and B obey a 

boundary condition in which the perpendicular component (⊥) ⊥) ⊥) ⊥) is continuous, while E and H 

obey another in which the parallel component (//) is continuous. This can be misinterpreted as 

implying that B and D are analogous, both being auxiliary fields, while E and H are analogous, 

both being primary force fields. The different boundary conditions for E and B arise, however, 

from their origin as divergent and solenoidal fields respectively, in keeping with their separate 

origins in charges and currents respectively. 
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Table 2: A summary of the boundary condition properties of the field vectors and their 

counterparts in Maxwell’s equations 

Boundary Conditions Maxwell’s Equations E D B H 

Homogeneous Homogeneous �  �  

Inhomogeneous Inhomogeneous  �  � 

Applies to Parallel Components Involves Curl �   � 

Applies to Perpendicular Parts Involves Divergence  � �  

 

 

Figure 2 : How Newton’s third law is broken. Two particles q1 and q2 are on orthogonal 

trajectories, as shown at instants t = 0, τ, 2τ and 3τ. For simplicity we take them both as being 

positively charged, but this in no way affects the generality of the results. As can be seen, the 

magnetic interaction as expressed in Equation (13) does not instantaneously obey Newton’s 

Third law for at no instant do we have F12 = -F21. It is easy to check these results conceptually by 

treating one of the moving charges as a current and deducing the direction of its field B at the 

location of the second charge by means of the right-hand screw rule, and also by noting that B 

must vanish along the axis of motion. The term v×B from the Lorentz force then gives the 

direction of the force on the second charge. The problem, therefore, is not with the equation, 

rather the equation exposes the physical problem. 

 

 

q1, v1 

q2, v2 

q1, v1 q2, v2 

q1, v1 

q2, v2 

q1, v1 

q2, v2 

F12 

F21 

F21 

F12 

F12 

F21 

F21 = 0 

F12 = 0 

t = 0 t = τ 

t = 2τ t = 3τ 

30 



© IEEE 2008,  Antennas and Propagation Magazine, Volume 50, No 1, February 2008   

 

 

 

 

 

 

 

 

 

 

 

Figure 3 : The magnetic field due to a moving positive point charge. The field has constant 

magnitude over the toroid-like surface of rotation, while its direction lies in the surface and 

perpendicular to the motion as shown. The left-hand view is a plane section through the axis of 

motion, while the in right view the motion is out of the page. 

2.12.9 Are D and H of any Fundamental Significance? 

But the question still remains, are H and D of any more significance than that they are convenient? 

After all, the essence of Maxwell’s contribution to electromagnetic theory is widely quoted as being 

the introduction of the displacement current 
t∂

∂D
into Ampere’s Circuital law, and is that not 

sufficiently significant? The point is debatable, as it is often possible to attach a physical significance 

to quantities that are arguably not in themselves fundamental. But we can say that as a minimum we 

require the fields E and B to represent the origin of the electric and magnetic forces, together with P 

and M  to represent the state of any matter present. All four of these quantities have obvious physical 

definitions and are sufficient in themselves without any need for H and D. That is not to say that H 

and D are not without meaning or of significance, they are simply not so basic. 

3 Fundamentals 

3.1 Coulomb’s Law and the Lorentz Force 

Coulomb’s law, Equation (1a), the fundamental equation of electrostatics, can be employed to define 

the electric field.  For a point charge at the origin, the field E at the point r  is given by 

2
0

ˆ
( )

4

q

rπε
= r

E r  (10) 

There is no serious challenge to this description except that Coulomb’s law itself is specific to 

stationary charges. It is necessary to combine the effects of Coulomb’s law with a magnetic force in 

v 

B 
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order to specify the forces acting on a point charge in motion. The combined electrostatic and 

magnetic force is known as the Lorentz force, referred to Equation (3). Rather than treat this as a 

separate effect, however, we can follow the work of Ampere on the magnetic forces between currents. 

The force between two currents I1 and I2 flowing in the infinitesimal line elements dl1 and dl2 is given 

by 

( )
2

12

122211
12

ˆ

4 r

dIdI
d o rll
F

××
=

π
µ

 (11) 

Here dF12 represents the force acting on element 1 as a result of the current carried by element 2, 

while 12r̂ is a unit spatial vector directed from 2 to 1.  While, as discussed in Section 2.10.2 above, 

dF12 and dF21 are not generally equal and opposite, the forces F12  and F21 integrated over actual closed 

current loops conveniently do balance [22, p. 136; 45, pp. 177-178]. 

Although he expressed it in a more basic form [5], we may nevertheless refer to Equation (11) as 

Ampere’s force law. Ampere is given credit for its deduction [22, p. 135; 6, pp. 92-97; 24, p4.12] 

nearly a century before the Lorentz force. It deserves specific recognition in that it provides the 

earliest and most basic statement of the interaction between two currents in just the same way that 

Coulomb’s law is the most basic statement of the interaction between two charges. 

Because it expresses the basic magnetic interaction between infinitesimal current elements, Ampere’s 

force law leads directly to the deduction of a force that arises between two charged particles only 

when they are both in motion (this not without some conceptual problems, as we shall soon discuss). 

All that is required is to express Equation (11) in microscopic form by replacing the vector current 

elements with moving point charges, q, and by making the equivalence between Idl and qv, where v is 

the charge velocity, to obtain  








 ×
×=

2
12

1222
1112

ˆ

4 r

q
q o rv

vF
π

µ
 (12) 

By including the electric field, we must therefore have the basic form of the Coulomb force between 

moving particles 

( )1 2
12 12 1 2 122 2

0 12

1
ˆ ˆ

4

q q

r cπε
 = + × × 
 

F r v v r  (13) 

The striking thing about Equation (13) is that it shows the magnetic interaction between two charged 

particles is simply a velocity dependent correction to the usual Coulomb’s law for static particles. This 

correction applies only when both particles are in motion within the observers frame of reference and, 

being of order of v1v2/c
2, appears to be entirely negligible at ‘ordinary’ velocities, e.g. up to Mach 10 

the magnetic interaction is at most 10-10 of the electrostatic force. Surprisingly, however, there are 

commonplace situations in which the electrostatic part of Equation (13) completely vanishes, as when 

the charged particles in question are imbedded in electrically neutral conductors, and we are left only 

with the magnetic interaction. As everyday experience shows, however, the magnitude of the magnetic 

force on its own need not be negligible. 
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As already alluded to, however, there are difficulties with both Equations (11) and (13) concerning 

Newton’s third law: “To every action there is an equal and opposite reaction”. Taking first Equation 

(11), consider a situation in which dl1 and dl2 are mutually orthogonal, with dl1 parallel to r 21 and 

dl2 perpendicular to it. We find dF12 = 0, while by simply interchanging the roles of 1 and 2 we find 

dF21 ≠ 0. Although we know that this imbalance vanishes when the elemental forces are integrated 

over closed circuits and infinite conductors   its existence on a microscopic scale is a little 

disconcerting. When we then come to address Equation (13), there is no such argument to fall back on 

as no circuits are involved, only two charged particles. The analogue of our example with two 

orthogonal current elements is now one in which we have charged particles q1 and q2 with velocities v1 

and v2 such that they are on orthogonal trajectories, Figure 2. On the one hand it is futile to make 

attempts to argue away the fact that here Newton’s Third law is being broken, but on the other we 

must recognize that the situation is entirely artificial. At low velocities, the interaction between the 

particles is dominated by the electrostatic force since the magnetic contribution, as we have seen, is 

negligible in such a case. Furthermore, at high velocities, Equation (13) cannot be used as a model for 

the interaction since a complete relativistic treatment is required [22, pp. 391 et seq.]  

A simple observation that can be made to demonstrate the need for ‘relativistic thinking’, however, is 

that the forces can be made to balance if we simply move from our original reference frame, X, to a 

new frame, X′. Here we choose X′ such that the average velocity of the two particles is observed to be 

zero. So when we, an observer at rest in X′, move with a velocity v  = ½(v1 + v2) with respect to X, the 

particles now have velocities7 v1′ = ½(v1 - v2) and v2′ = ½(v2 - v1), so that their relative motion is in 

opposite directions along parallel trajectories. Here we have no apparent conflict with Newton’s Third 

law since we can simply exchange v1′ with -v2′ and vice versa in Equation (13) while leaving the result 

unchanged. On the other hand, replacing r 12 with r 21 alters the sign so that, in all, F21 = -F12 
8. This 

reinforces the notion that any conflict is to do with observational issues and as such as such the theory 

of special relativity must be involved. We will return to this issue in Section 5.  

Page and Adams [46], however, offer an explanation by arguing that in spite of the force imbalance, 

the total momentum is conserved when it is taken to comprise both mechanical and electromagnetic 

momentum. The exchange of mechanical and electromagnetic momentum accounts for the apparent 

force imbalance. The momentum density of a traveling electromagnetic wave is generally taken to be 

given by ε0E×B, but the context here is quite different since no waves are involved. The interpretation 

can only be that the total energy in the electric field, 21
02 E dVε∫ , is equivalent to a mass 21

022

1
E dV

c
ε∫  

                                                      
7 Newtonian relativity involving only vector addition of velocities suffices for this change of reference frame 

since the velocities involved need not be large. Applying special relativity would be more complicated and 

would make little difference to the end result. 

8 Indeed, this remains true even if we superimpose a further motion on X′ with any velocity proportional to 

(v2 - v1), as the trajectories of the particles will still remain parallel. In short, the Third law holds good for any 

reference frame X′ having a velocity αv1 + (1-α)v2 with respect to the original rest frame, where α is any real 

number. This includes the situation where either particle is at rest. 
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that can carry momentum 21
022
E dV

c
ε∫

v
when the charge is in motion. Since E and B are related 

through Equations (14a) and (14b) below, this last expression can be seen to be directly linked 

to 0 dVε ×∫ E B . Both Stratton [9, pp. 103-104] and Jackson [22, pp. 192-194] give detailed accounts of 

the conservation of momentum including the electromagnetic contribution 

While Equation (13) is of limited practical use, it is nevertheless of fundamental interest because  

 • It shows that the Coulomb force of electrostatics must be modified when the charges are in motion 

 • The additional contribution that arises when the charges are in motion accounts for the origin of 

magnetic force 

 • It involves fundamental interactions between particles alone and puts magnetism and electricity 

together, whereas Ampere’s force law, Equation (11), can be read as a effect between currents that is 

unconnected with Coulomb’s law 

 • Ampere’s law, the Biot and Savart law (see below) and the Lorentz force may all be derived from it 

 • The asymmetry F21 ≠ -F12 provokes a serious problem for Newtonian physics that must be 

recognized as evidence for special relativity. 

From Equation (13) we can write fields E and B that are consistent with the Lorentz force as  

2
0

ˆ( )
4

q

rπε
=E r r  (14a) 
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B r v r

v r

 (14b) 

These apply to a particle of charge q situated at the origin and having a velocity v. Integration of B 

over a  given charge distribution gives the result in the more familiar form based on current density 

rather than discrete charges in motion. As illustrated in Figure 3, the form of B in Equation (14b) 

contrasts strongly with the radially symmetric Coulomb field in Equation (14a).  

The magnetic field due to an infinitesimal current element, effectively the magnetic field of a moving 

charge, was the contribution of Biot and Savart [22, pp. 133-134; 7, p. 174; 9, pp. 230-232; 

45, pp. 178-179]. As an aside, it is to be noted that two of the references cited here have the law of 

Biot and Savart, as it is known, defining B while the others have it defining H. The difference lies in 

whether we take the current involved to be total current, or simply free current (Section 2.12.3). In the 

former case it defines B, and in the latter it defines H. This kind of ambiguity never seems to arise 

with the electrostatic field where Coulomb’s law is always treated as defining E rather than D, even 

though to do so would enable the definition to directly carry over into dielectric media. There is no 

doubt as to the form we have in Equation (14b), since we are dealing with microscopic rather than 

macroscopic fields (Section 2.12.1) and we are being specific that it is the field of the charge q alone 

that we are interested in, and not in the fields due to any bound charges that might be affected by these 
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fields. What applies to E in this case applies to B, and it would be inconsistent to quote E on the one 

hand and H on the other. 

We may take Equations (14a) and (14b) as fundamentally defining the forces between charged 

particles and their associated fields. Putting the two together with Equation (13), we derive the Lorentz 

force as in Equation (3). With B originating from Equation (14b), the magnetic field involved in the 

Lorentz force must be B. The forces on specified charged particles and currents always depend on E 

and B and never directly on D and H - there is no option about using either microscopic or 

macroscopic quantities in this context. 

3.1.1 Verification the Lorentz Force 

While we postulate that B is the fundamental magnetic field on the basis that all magnetization arises 

from currents, what is the proof? Does it carry over, for example, into magnetic media? It has been 

asserted by one author [47, p. 118] that the experimental proof of the correctness of Equation (3) has 

been demonstrated on numerous occasions, but if so, such proof is now hard to track down as it has 

not been given the place in the literature that it truly deserves - text books in particular appear to avoid 

the issue.  

Lorentz in fact introduced his ‘law’ only in the form of a postulate to the effect that the force acting on 

a unit charge is given by [23; 48; 49, p. 14;1, vol. 1 p. 422] 

 

(15a) 

(15b) 

Note that here we have dropped the original gothic script. This was not, as we have seen the first 

recognition that magnetic fields caused forces on infinitesimal current elements, as recorded by 

Oersted and Ampere. Even Maxwell included the force on moving charges among his original 

equations, first expressing it in his original paper in terms of I×µH [2, p. 489] and then later, in his 

treatise, he unambiguously states the force on a unit charge in motion to be v×B [3; vol. 2, p240]. 

Nowadays the notation used by both Maxwell and Lorentz is quite unfamiliar, and there may be more 

to Lorentz’ choice of the variables d and h (i.e. D and H) than meets the eye. But because of their use, 

neither of the equivalent forms in Equation (15) is unambiguously recognizable as being identical to 

Equation (3) which is based on the fields E and B. How and when this later form came into regular use 

is now obscure, as it is simply stated without comment in most of the recent literature.  

One would think that are some simple observations in magnetic materials that would provide an 

experimental basis for distinguishing between B and H in the Lorentz force, for example  

 • electron spin resonance, ESR, in magnetized ferrites,  

• the Hall effect within a conducting magnetic sample, and 

• the force on a magnetically soft conductor carrying current in the presence of a magnetic field. 

Surprisingly perhaps, ESR shows no difference between B and H, the Hall Effect offers no clues as it 

is anomalous in magnetic conductors, while it turns out that the force on a magnetic conductor is 

h v d f 

H v D F 

× + = 

× + = 

c 

c 
1 

2 2     4 π 
or 
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essentially no different from a non-magnetic one. The test would instead require to be carried out 

within a magnetic fluid. Appendix 2 gives further background on these examples showing (a) the 

difficulties in finding a test capable of producing a conclusive result9 and (b) in the case of ESR and 

the Hall effect, illustrating some of the difficulties with the available literature that have been 

discussed in Section 2.1 above. 

3.1.2 Theoretical Grounds for the Lorentz Force in Magnetic Media 

While the experimental evidence is hard to pin down, Wannier [50] has addressed the issue by means 

of calculations on beams of charged particles penetrating ferromagnetic materials. He uses b to denote 

the field actually responsible for the Lorentz force and concludes that, except under rather special 

circumstances, e.g. allowing for close range forces and quantum effects, b = B. 

As discussed above, however, the conclusive theoretical arguments for both the origin and nature of 

the Lorentz force are more fundamentally based on the premise that all magnetic fields originate from 

moving charges or intrinsic circulating currents together with the theory of special relativity. 

3.2 The Force Arising From Magnets 

In spite of the relative simplicity of the description of the magnetic force as an interaction between 

directed current elements or moving charges, magnetic dipoles do exist and have to be dealt with. 

Their occurrence is commonplace in the fields of applied physics and electromagnetics, and only very 

rarely do we deal with the magnetic interactions between individual electric charges. 

3.2.1 Dipole Interactions 

A current I circulating around an infinitesimal loop of area dA has a magnetic moment10 m given by 

dAInm ˆ=  (16) 

where n̂  is the unit vector normal to the plane of the loop and following the right-hand screw rule in 

relation to the direction of the positive current flow I.  

While it is relatively straightforward to define the dipole moment thus, the interaction between two 

such infinitesimal dipoles of magnetic moment m1 and m2 is considerably more complicated than for 

the simple Coulomb interaction between individual charges or poles. The primary interaction is in the 

form of a torque ΓΓΓΓ12 given by 

0
12 1 2 2 13

ˆ ˆ3( )
r

µ
= ⋅ × − ×  Γ m r m r m m  (17) 

where r̂  is the unit vector from m1 to m2 and r is the distance in between. In addition, however, there 

is also a direct force F12 that is often overlooked. This is not a phenomenon that applies only to the 
                                                      
9 The author would be grateful for any references to conclusive experimental evidence. 

10 IEC60050 most confusingly terms this the magnetic area moment (IEV 121-11-49) and defines the magnetic 

dipole moment as µ0m with symbol j  (IEV 121-11-55). 
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macroscopic dipoles such as bar magnets that we are all familiar with, it applies equally to the 

infinitesimal dipole. It is often forgotten about because a single dipole experiences no net force in a 

uniform field, only a torque, but between two elementary dipoles there is a residual force because the 

dipole fields themselves are not uniform, and a dipole m will experience a net force F equal to 

( )Bm ∇⋅  in a non-uniform field B.  

Even neglecting the direct force, Equation (17) is not exactly amenable to further reduction or simple 

interpretation. Difficulties of this sort are no basis for arguing that the fundamental magnetic force is 

better expressed in the form of a Coulomb interaction between magnetic poles. In fact it is Equation 

(13), the microscopic equivalent of Ampere’s force law, that provides the simplest basis for describing 

the elementary magnetic interaction. Ampere’s force law itself, Equation (11), is equally satisfactory 

when dealing with currents rather than discrete charges. 

The torque on a magnetic dipole in a uniform magnetic field B as given in Equation (2) follows 

directly from Equation (16) and the Lorentz force, Equation (3). This can easily be tested by 

considering a square loop of side a, with B in the plane of the loop and parallel to one of the sides. 

Two opposing sides of the loop will experience equal and opposite forces equal to BIa while the 

remaining two will experience no force at all, being parallel to B. The net torque is then 

(BIa) × a = Bm, in agreement with Equation (2). This result, at least, is relatively simple. 

3.2.2 Polar Versus Magnetic Dipoles  

While the physical basis of the current dipole is simple and more rational than the polar model dipole, 

we cannot physically split a solenoidal dipole into two simpler equal and opposite parts. It is therefore 

often tempting to see if it is possible to make the polar dipole model work as a substitute for the 

current dipole model. The polar dipole moment mp is given as per an electric dipole with mp = pdl, 

where ±p are the pole strengths separated by dl, and so we have to ‘equate’ this to dAII nm ˆ= . If we 

did so, however, we would not be justified in writing Equation (2). This arises because the vector 

characters of mI and mp are different, the former being axial and the latter being polar. It would imply 

that the character of the torque, ΓΓΓΓ, was that of a real vector11. We could be tempted to write Γ=Γ=Γ=Γ= 

mp × µ0H, but this is clearly not compatible with Equation (2) in general. Equation (17), on the other 

hand, is valid whatever the dipole character. 

 Figures 4a and 4b illustrate the difference between finite polar and current dipoles. The forms of the 

fields are given in several texts [11, pp. 253-255 and 271-272; 45 pp. 48-49, 205-210 and 267; 22, pp. 

98-101 and 141-143]. The difference is in fact only discernable on a scale comparable to the size of 

the dipole itself, but it is a very significant difference in that the field directions in the centre of the 

dipole are reversed. It will be seen below that these inherent differences, including the vector 

character, are retained even when we consider an assembly of infinitesimal dipoles. 

                                                      
11 Since poles are fictitious we could patch up this problem by assuming that a pole p would reverse its sign 

under inversion, but this would be simply adding to the artifice. 
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3.2.3 Properties of Dipole Fields 

The properties of the ‘force field’ due to infinitesimal polar and current dipoles are indistinguishable in 

that by making the dipoles vanishingly small, we can only see the fields on a large scale as in Figure 

4c. 

Unfortunately, any discussion of the basic nature of these fields is somewhat limited without reference 

to two concepts from vector analysis, divergence and curl, with symbols ∇⋅ and ∇× respectively. 

While they are not the easiest of concepts to grapple with, their names give a guide to their meaning. 

A divergent field emanates from a point, while a solenoidal field curls, or circulates, around an axis. 

There are analogies with fluid flow, with divergent flow being associated with a source (or sink) of 

fluid, while solenoidal behavior describes a vortex i.e. circulation of fluid around an axis. The picture 

of swirling bathwater disappearing down the plughole is therefore a combination of the two. 

Whirlpools at sea, however, are created by opposing currents, and do not have an associated source or 

divergence, and therefore the two concepts of divergence and curl appear quite independent. 
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Figure 4 : A comparison of solenoidal and polar dipoles. (a) Local ‘force field’ for a current loop 

dipole. (b) Local ‘force field’ for a polar dipole. (c) Distant ‘force field’ for either current loop 

dipole or polar dipole. On the microscopic scale the characteristics of these two fields are are 

entirely different, while on the large scale the characteristics of both fields are are identical. 35 
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A field that is either divergent or solenoidal will often have both zero curl and zero divergence in a 

given region of space. In fact, the divergence or curl may be zero everywhere except at a single point. 

But the existence of that point determines the nature of the field around the point, as we will see in the 

examples below. 

The field resulting from a current element is solenoidal, that is to say it has zero divergence 

everywhere but locally it has a non-zero curl everywhere, while the field due to a pole or charge is 

locally divergent and has zero curl. Solenoidal and divergent quantities are characteristically different 

and consequently there is no possibility of having two fields b and h which are everywhere equal 

while one is solenoidal and the other divergent. This is quite evident from Figure 5a where the 

elementary solenoidal field encircles its source, while in Figure 5b the divergent field emanates or 

converges directly from or to it, depending on the polarity of the source. The fields b and h are both 

mathematically and conceptually ‘orthogonal’. 

This discussion of curl and divergence leads to an apparent paradox. If we hold B to originate from 

currents and H from poles, then, how can they provide seemingly compatible alternative descriptions 

of the same phenomenon, given the completely opposite solenoidal and divergent characters of the 

fields that they generate? And on the other hand, if solenoidal dipoles are identical to polar dipoles on 

a large scale, why, fundamentally, can we not have a fully consistent physical description of 

magnetism in terms of poles which would be simpler to deal with mathematically? 

The answer is to these questions are relatively straightforward, if not immediately obvious. Given the 

large-scale dipole shown in Figure 4c, we cannot tell at all if it is solenoidal or polar in origin because 

both the curl and divergence of the field are zero everywhere except within the infinitesimal origin of 

the dipole itself. But as we shall now see, it is possible to tell the difference for macroscopic dipoles 

even on a large scale. 

3.2.4 Incompatibility between Polar and Current-Loo p Magnetic Dipoles 

There are three types of magnetic dipole that could be involved in magnetic phenomena 

• Polar 

• Solenoidal 

• Induced 

The first two types are permanent dipoles based on alternative descriptions, only one of which is 

conceptually correct. The third type is based on a secondary effect where there is ordinarily no net 

dipole moment at the atomic level until a magnetic field is applied. Our discussion here relates only to 

the first two types, and we only mention the third as it is the origin of so-called diamagnetism 

[14, pp. 134-135]. Induced magnetism will always tend to oppose the applied field, by Lenz’s law, so 

that the associated magnetic susceptibility turns out negative. Nevertheless, such magnetic effects are 

still the equivalent of circulating currents so that for our discussion here, which has the objective of 

distinguishing between polar and solenoidal dipoles, we need only compare these two particular types. 

 



© IEEE 2008,  Antennas and Propagation Magazine, Volume 50, No 1, February 2008   

 

 

 

 

 

 

 

 

 

  ∇∇∇∇⋅⋅⋅⋅ ∇∇∇∇×××× 

Solenoidal (a), (c) 0 Nonzero somewhere 

Divergent (b), (d) Nonzero somewhere 0 

 

Figure 5 : A comparison of purely solenoidal and purely divergent fields.Diagram (a) is the 

solenoidal field for a line of current directed into the page, and diagram (b) is the divergent field 

for a negative charge or pole lying in the plane of the page. Diagrams (c) and (d) show the 

simplest of solenoidal and divergent fields having only a single nonzero component. Both such 

fields vanish within the plane out of the page indicated by the dotted line. 

 
 

 

 

 

 

 

 

 

 

Figure 6 : A comparison of magnetization of a body due to polar and solenoidal sources. An 

ellipsoid, shown unpolarized in (a), has identical uniform magnetization shown by the arrows,, 

in (b) and (c), In (b) this magnetization is due to a surface pole distribution, while in (c) it is due 

to a surface current distribution. These two distributions are entirely different, even though the 

magnetization on the interior is the same.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

          N  

N                   

(b) polar (c) solenoidal (a) unpolarized 

� dl 

S                   S 

            S   

36 

37 



© IEEE 2008,  Antennas and Propagation Magazine, Volume 50, No 1, February 2008   

We are all familiar with the result that two magnetic dipoles held at separate locations in free space 

will tend to line up antiparallel12 to each other if they are free to rotate. Whether the dipoles are 

solenoidal or polar, the result is the same simply because the mathematical description we have for 

them makes no distinction between them except on an infinitesimal scale. 

A single dipole placed within a continuum of polar dipoles, as in the historical description of a 

magnetized medium, will always align itself antiparallel to the local magnetization, i.e. antiparallel to 

the average dipole moment per unit volume where it is located. 

Contrarily, a single dipole placed within a continuum of solenoidal dipoles, as in the modern 

description of a magnetized medium, will align itself parallel to the magnetization. The observation of 

this completely opposite behavior in practice would be, and is, of course, an effective qualitative 

demonstration that magnetization has its origin in circulating currents. 

But, viewed this way, the paradox is why should there be any difference at all? If polar and current 

dipoles are essentially indistinguishable except in their infinitesimal detail, how can they bring about 

this fundamental and irreconcilable difference in the macroscopic behavior of a magnetized medium? 

To answer this we have to understand how the properties of an individual point dipole map onto a 

finite solid body. 

While this discussion applies equally well to both poles and charges, for simplicity we will refer to 

poles alone. Taking first the infinitesimal polar dipole, it is formed by separating two equal but 

opposite poles, +p and –p, by an infinitesimal distance dl, with the dipole moment m being given 

effectively as in Section 3.2.2. Now, we can apply exactly the same concept to two equal and opposite 

pole distributions that are displaced by the infinitesimal distance dl. In the straightforward case that 

the distributions are uniform everywhere inside a closed surface which defines the shape of the body 

in question and zero elsewhere, the net pole density within the body is zero prior to any such 

displacement, and in general this situation is unaffected by the displacement except at any part of the 

surface that is not parallel to the displacement. At any such point on the surface, the effect of the 

displacement will be to introduce a net surface pole density where the distribution has been displaced 

outside of the original surface of the body, for example, as in Figure 6b. The net surface pole density σ  

is given by 

s

ps dl

nM

nnr r

ˆ

ˆˆ()( )

⋅=

⋅Π=σ
 (18) 

where  Π(r ) is the positive pole volume density within the body, the displacement is dld pnl ˆ= , and 

ds is a given element of the surface whose unit normal directed out of the body is sn̂ . For simplicity 

we take Π(r ) to be constant within the interior of the body so that M , the dipole moment per unit 

volume, is constant and equal to Πdl.  

                                                      
12 By antiparallel we shall mean geometrically parallel but directed in opposite orientations and, in the same 

context, we shall mean by parallel geometrically parallel and directed in the same orientation. 
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Because the net pole density is always zero within any region of the body, the dipole moment within 

the body has no discernible effect and the surface pole density created by the magnetization must 

account for all of its effects. Inside the body, the net ‘force field’ is therefore entirely determined by 

the surface pole distribution, so that we can leave the surface pole distributions in place, and remove 

the body itself. Everything in the interior will behave as if in vacuo, but under the influence of the 

induced surface pole (or charge) distributions. We cannot definitely say this, however, if the interior of 

the body has a non-uniform pole distribution, but such cases are more complex than we need consider 

here in elucidating the basic principles. 

Given that the surface pole distribution induced by the magnetization determines everything we need 

to know for a body subjected to magnetization of this sort, it inevitably follows that the ‘force field’ in 

the interior of the body is directed in the opposite sense to the field emanating from the body. The 

reason for this is that when are near the positive pole distribution, say, the field will be directed away 

from it as shown in Figure 6a, irrespective of whether we are on the interior or exterior of the body. 

Similarly, if we are near the negative pole distribution, the field will be directed towards it. 

Now let us turn to the solenoidal dipole which is represented by an infinitesimal current loop. As many 

textbooks show, a configuration of identical touching current loops lying in a plane behaves 

identically to one single loop of current passing around the perimeter of the configuration. This is an 

illustration of Stokes’ theorem [22, p. 9; 11, p. 258-259; 9, pp. 237-238]. Therefore, if we take a 

uniformly polarized body comprising solenoidal dipoles and divide it into plane sections orthogonal to 

the direction of magnetization, the total magnetization of the body is represented by the collection of 

the currents traveling around the perimeters of all such sections. This in effect represents a net current 

lying entirely within the surface of the body and circulating around the axis of magnetization. The 

current is given in terms of a surface density K  Am-1 traversing any line element that both lies within 

the surface and is coplanar with the axis of magnetization.  

If we let each infinitesimal current loop in a plane have a magnetic moment dm, then according to 

Equation (16) the current I circulating around a loop of elemental area dA is given from  dm=IdA. As 

we argued earlier, all of the loop currents lying entirely within each plane section cancel by virtue of 

touching an identical adjacent loop, but around the edge of the plane section, i.e. at surface of the 

body, there is no touching loop to provide a canceling contribution, and so the net current traveling 

around the edge of the plane is simply I, the dipole current itself. If the plane we have taken as a 

section has thickness dz, then I/dz gives the linear current density, K, along the edge. However, we can 

also relate dm to the magnetization per unit volume, M , since the volume occupied by each dipole is 

dAdz, and so 

K
dz

I
M

Id

dzMdd

==⇒

=
=

A

Am

 

We therefore have K equal to M or, rather more precisely,  
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snMK ˆ×=  (19) 

Similarly to the situation with polar dipoles, where we may remove the entire body and leave the 

polarization to be represented by the surface charge alone, we can remove the entire body and leave 

the surface current to represent the magnetization, Figure 6c.  

While the surface current density provides a fully alternative description to a surface pole density, the 

two descriptions are not physically equivalent. Note in particular that while one, K , is essentially 

vector in character the other, σ, is scalar, and that their magnitudes have entirely different distributions 

over the surface, as we see from Figures 6b and Figure 6c.. The poles tend to concentrate where the 

axis of magnetization cuts the surface, whereas the current density concentrates around the equatorial 

plane. We might try to argue that these differences, though significant, tend to be mathematical in 

origin, but what we cannot escape from is that the ‘force field’ that exists inside a body magnetized 

with current dipoles must be in the same direction as the magnetization itself, and that is completely 

opposed to the situation that holds within a body magnetized with polar dipoles. 

This is demonstrated in Figure 7. To convince ourselves of the point, we must follow it through from 

first principles and, for the moment, without thinking of B and H. We must think only about the actual 

‘force field’, whatever it may turn out to be called, and we can deduce as much as we need to know 

about this field simply from the way that the dipoles tend to align. As for a test dipole, we choose a 

current loop simply for consistency with the modern view, but we already know that the choice will 

not affect the outcome because individual elemental dipoles have indistinguishable properties. They 

have identical external ‘force fields’ and we cannot detect the differences in their interior. However, in 

Figures 7b and 7c we have chosen different constituent dipoles for the magnetized body itself. The 

corresponding surface pole and surface current distributions would be as in Figures 6b and 6c.  

In Figure 7b, the internal polar dipoles must be aligned ‘up’ in order to be consistent with the required 

magnetization and to have external field consistent with the orientation of the external test dipole. If 

the ‘force field’ FFFF emanating from the surface of the body is ‘up’, then on the other side, the interior, it 

must be ‘down’, as we have already discussed in relation to Figure 6b.  

In Figure 7c, where we have a body of current dipoles, the effective surface current must be anti-

clockwise (as viewed from the top) in order to be consistent with the required magnetization and to 

have an external field consistent with the orientation of the external test dipole. Remembering that 

parallel current elements attract whereas antiparallel ones repel, the current in the test dipole loop will 

tend to be parallel to the current around the perimeter of the plane cross-section in question. On the 

interior this must also be the case so that here the test dipole must now be ‘up’, and consequently the 

‘force field’ in the interior of the body must also be ‘up’, just the opposite of the polar magnetized 

body.  

This is the truly fundamental point. It tells us that, identical though the properties of the two different 

types of individual dipoles may seem, the ‘force field’ inside a magnetized medium - which is just an 

ensemble of such dipoles - is represented by Figure 8a, which describes a ‘force field’ due to 

circulating currents, and not as in Figure 8b which describes a ‘force field’ due to magnetic poles. 

Mathematically, there is a subtle difference between the two types of dipole such that when we  

38 



© IEEE 2008,  Antennas and Propagation Magazine, Volume 50, No 1, February 2008   

 

 

 

 

 

 

 

 

Figure 7 : The alignment of magnetic test dipoles inside and outside a magnetized body. In (a) 

we see the entire body, magnetised as shown. The external test dipole aligns antiparallel with the 

bulk magnetisation. Within a plane cross section of the body, as at (b), we assume polar 

magnetisation and the internal ‘force field’ F    is ‘down’, with the test dipole seeking the South 

pole, while at (c) F is ‘up’ because the test dipole aligns itself so as to keep its current parallel to 

the effective magnetisation current circulating around the edge of the plane. 

 

proceed from an individual dipole to a large-scale ensemble or continuum of dipoles, their original 

incompatible solenoidal and divergent characters, which are effectively suppressed by the process of 

making them infinitesimal, simply re-emerge. This arises because those distinct properties, which, 

although conveniently hidden by the smallness of scale, are still there, and they become transferred to 

the ensemble or continuum as though the result were simply a scaled-up version of the infinitesimal 

dipole, albeit possessing the actual geometrical detail of the ensemble. Finally, it is interesting to 

compare the three bulk pictures 8(a-c) with their microscopic counterparts 7(a-c). 

It is an important point, however, that the behavior discussed above has been reasoned from the basic 

properties of the relevant types of magnetic dipoles in free space so that there can be no ambiguity 

resulting from the use of either B or H. We replaced the magnetized body by its equivalent pole or 

circulating current distribution, so we reasoned from fundamental free-space principles, not 

macroscopic ones. This therefore provides the crucial physical underpinning of the phenomenological 

description – the magnetic ‘force field’ is entirely solenoidal, never divergent. Consequently there are 

no real poles. It is not sufficient to state - as is almost invariably done – that this follows from ∇⋅B = 0 

alone. As this condition only negates the existence of free poles, it leaves open the possibility that 

there are intrinsic magnetic dipoles of the polar rather than solenoidal type. We must also state that the 

‘force field’ is associated with B rather than H. If we did allow that the ‘force field’ could alternatively 

derive from H, then since we may have ∇⋅H ≠ 0, the converse of the standard argument for B would 

apply, so that poles would exist. H is only a ‘force field’ if poles exist, poles do not exist, ergo H is not 

a ‘force field’. 

Consider further the implications of the mode of interaction between dipoles. If an individual dipole 

tends to line up with the macroscopic magnetization, then this tends to increase the field rather than 

decrease it. This is the opposite behavior to an electric dipole in a polarized medium where the dipole 
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alignment tends to reduce the field, as in the macroscopic form of Coulomb’s law. This explains the 

essential difference between the SI and emu forms of Equation (4), since the force between magnetic 

poles tends to increase in the presence of a magnetic medium rather than be decreased by it. On these 

grounds alone, if we must introduce poles as an artifact, then only the MKSA form is valid. Moreover, 

to be consistent, it is actually the emu form that requires to be fixed up by an artificial concept of 

induced poles, which is no more than an apology for a problem which endures only for historical 

reasons. 

In a ‘polar’ description, the equivalent distribution of bound charge is given by ∇⋅P.  Analogously, the 

equivalent distribution for poles is therefore given by ∇⋅M . In the circulating current description, 

however, ∇×M  is the equivalent circulating current responsible for magnetization. Note that we cannot 

describe the same magnetic field as originating from both ∇×M  and ∇⋅M  together; it has to be the one 

or the other. On the face of it, however, it is quite hard to see how such different quantities such as 

∇×M  and ∇⋅M  can give the same field and we shall return to this problem later. 
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Figure 8.  A comparison of the possible ‘force fields’ associated with a magnetized body.  (a) The 

‘force field’ inside and outside a sample polarized throughout by solenoidal dipoles. The field is 

definitely solenoidal in origin as the sample could be replaced by a current loop around its 

exterior. (b) The ‘force field’ inside and outside a sample polarized throughout by polar dipoles. 

The field is definitely divergent since the sample could be replaced by a pair of oppositely 

charged plates. (c) The ‘force field’ outside a sample of polarized or magnetized material. There 

is nothing to reveal whether the field is polar (divergent) or solenoidal in origin. 
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4 Maxwell’s Equations 

No discussion of electromagnetic theory can be complete without a discussion of Maxwell’s 

equations. Maxwell’s equations are so significant that they are sometimes seen as the starting point 

from which all else that is of interest follows. Even Stratton, to whom we so frequently refer, takes 

them as a postulate, introducing them on page 1 of his classic work [9, pp. 1-6]. But the standard form 

of the equations we see and use today is not quite as Maxwell first set them down [23, pp. 231-232]. 

As a result of refinements initiated by Heaviside [10, vol. 2, pp. 1-23], just four of his original eight 

sets of equations [2, pp. 480-486] are now taken as a basis, while his force equation equivalent to 

Equation (3) was later associated with Lorentz 

t
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 (20) 

These go together with the historical form of the constitutive relations, as given in Equations (5) 

above, and the Lorentz force, Equation (3), as a basis for describing a vast range of electromagnetic 

phenomena. But, in formulating the equations as a description of macroscopic phenomena by 

including D and H rather than E and B alone, the true set of microscopic or free-space equations is 

obscured. While substitution of ε0E for D is an obvious step back towards the free-space equations, we 

have an ambiguity with B and H, which we will now explore. If Maxwell’s equations were entirely 

fundamental, no such ambiguity should exist. 

4.1  Free-Space versus Macroscopic Equations 

By free-space we mean that the bulk polarization P and magnetization M  are both taken as being zero. 

Any bound charge or magnetic current involved with matter has to be included explicitly as sources 

along with all the free charges and currents.  Maxwell’s equations can then be written in either of two 

forms, one dependent on E and H while the other is dependent on E and B.  Conceptually, one and 

only one of the two forms is valid. First of all, in free space we must select only two fields, one 

electric and the other magnetic, as a third and fourth would be redundant. Provided that we accept that 

the proper choice for the electric field is E, against which there is little argument, this restricts our 

choice to just those two forms.  

40 
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Figure 9a : The development of electromagnetic theory from basic principles. In the static cases, 

shown in the yellow, the starting points are Coulomb’s and Ampere’s laws. The Lorentz force 

can be argued as evidence for Einstein’s theory of special relativity. Once that theory is 

independently established, the Lorentz force and the existence of the magnetic field itself can be 

derived. Crossing from statics to dynamics, shown in the green boxes, special relativity can be 

invoked to provide the time-dependent equations we know as Maxwell’s equations, confirming 

both Faraday’s and Maxwell’s contributions. H and D are not essential and are required only in 

order to more readily describe fields in matter. 
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Figure 9b. A more elementary approach based on Coulomb’s law modified as in Equation (13) 

allows the deduction of all the fundamentals of electrostatics and magnetostatics in free space. 

Ampere’s force law is implicit, and, rather than arising separately, E and B are abstracted 

simultaneously leading to directly to the Lorentz force. As before H and D are not essential but 

can be added later, making their auxiliary roles clear. 41 
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4.1.1 Free-Space Maxwell’s Equations in Terms of E and H 

In this first arrangement we eliminate D by writing instead ε0E, since P = 0. But for B we refer to the 

constitutive relations, Equation (5) or (6), and deliberately write µ0(H+M ) in its place. The reason for 

this is that with Maxwell’s equations as given in Equation (20), there could otherwise be no source for 

an intrinsic magnetic field since J is to be considered ‘free’ - a pure conduction current. With ∇⋅B = 0, 

therefore, we must have ∇⋅H = -∇⋅M  . The required magnetic source is provided by the divergence  of 

the macroscopic quantity -M . We can therefore define a microscopic quantity Π, a ‘pole density’, as 

the appropriate source. But we must apply constraints as to which functions are permissible for a pole 

density, for example, by requiring ∫ =Π 0dV  over of any region space that is taken sufficiently small 

but still finite. In addition to the pole density, Π, we must also have a pole current density, ΥΥΥΥ, as the 

pole distribution may move. In analogy with moving charges for which we have J = ρv, we can write 

ΥΥΥΥ = Πv. Since Π = −∇⋅M , we must then have 
t∂

∂= M
Υ  from the continuity equation, assuming that 

this applies equally well for magnetic poles as it does for electric charges. 

Consequently, we have for the free-space equations in this representation a formulation that appears to 

be consistent with the polar description of magnetization: 
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4.1.2 Free-Space Maxwell’s Equations in Terms of E and B 

The other form we may take is 

0

0

0

0

0

   free mag

t

t

ρ
ε

ε
µ

∇ ⋅ =

∇ ⋅ =
∂∇ × + =
∂
∂

∇ × − = +
∂

E

B

B
E

EB
J J

 (22) 

Here we are only required to accept that all magnetism arises from currents alone. We must therefore 

include a term Jmag even in the free-space equations in order to represent any intrinsic or induced 

magnetic dipoles that arise from spin rather normal conduction currents. We have therefore written J 

as Jfree+ Jmag in order to make the distinction between the conduction current and the intrinsic 

magnetic current. While Jfree will be a function of both E and B, Jmag differs in that it will be entirely 
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independent of E. Note that while it is true that an orbital electron can give rise to both polarisability 

and magnetization, in any basic phenomenological representation these effects would be seen as being 

separate. 

To accept the first form of the free-space equations, Equations (21), is to adopt a model of magnetism 

that includes poles and, as we have seen in the previous section, effectively implies that H is the force 

field. In accepting the second form, Equations (22), we are recognizing that all magnetism, as Ampere 

was first to believe, arises from currents alone. It would save a lot of trouble if Equations (22), were 

given the recognition they deserve by referring to them as the free-space Maxwell’s equations, and 

teaching them as such before launching in to the conventional macroscopic form as in Equations (20). 

With the free-space form as the starting point, a microscopic description of electrical and magnetic 

polarization can then be brought in to derive, as for example Scharf demonstrates [16, pp. 151-157], 

the full macroscopic form of Maxwell’s equations by proceeding along the lines of the Lorentz-Lorenz 

treatment referred to in Section 1.2 above. The equations so derived are no other than the set of 

Maxwell’s phenomenological equations that we are so familiar with, including the constitutive 

relations. The physical basis for the phenomenological theory of electrodynamics is therefore held 

within the free-space Maxwell’s equations together with the Lorentz-Lorenz development of the 

macroscopic equations. Buchwald [51] presents a detailed account of the conceptual difficulties faced 

by the original Maxwellian macroscopic theorists in understanding the true nature of the interaction 

between electromagnetism and matter, and how the microscopic view eventually took hold as the 

electron theory progressed and the contentions were gradually resolved. Today, of course, with 

unavoidable hindsight, we think little of it. The macroscopic and microscopic pictures are seen to fit so 

obviously together that it is perhaps difficult to appreciate the quarter of a century of debate and 

counter debate that was involved in the transition.  

4.2 Microscopic Form of Maxwell’s Equations 

There is another approach to Maxwell’s macroscopic equations [38, pp. 427-428; 16, p. 151]. Here the 

phenomenological description of matter in terms of polarization P and magnetization M  is dropped 

resulting in a description purely in terms of the fundamental fields E and B together with all source 

charges and currents, as in the free-space Maxwell’s equations, Equations, (22). In doing so, however, 

we can still identify the source terms related to the presence of matter with appropriate functions of P 

and M . In principle, we can carry out a similar exercise using E and H as the basis fields, as in 4.1.1 

above, in order to see how a pole based theory would look. 

4.2.1 Maxwell’s Equations in Terms of E and B Alone 

In order to proceed we first of all note that 

• Electrical charge comprises all charge, both bound and free 

• The polarization P arises from the  bound charge, ρbound, acting as source 

• Motion of the bound charge constitutes a true current, Jbound = 
t∂

∂P  
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• The magnetization M  arises from the implied circulating current Jmag acting as source [9, p. 242]. 

Turning then to Maxwell’s original equations, Equations (20), only the first and fourth of need 

attention. In the first, if we wish to replace D with ε0E+P then we must simply replace ρfree with all 

charges present, both bound and free, ρtotal . In the fourth equation, we need to do four separate things: 

• replace D with ε0E+P, as in the first equation, 

• represent 
t∂

∂P by Jbound  ,  

• replace H with 
0µ

−B
M , 

• represent ∇⋅M  by Jmag . 

Only the last of these four steps needs any further justification. If we have a magnetic field due to a 

real circulating current, Jfree, then ∇×H = Jfree , and therefore, as in the free-space equations, 

Equations(22), we are simply ascribing the origin of any form of magnetization that is not due to a 

conduction current, to an equivalent current, Jmag. In any case, Jmag = ∇×M  is simply the more general 

form of snMK ˆ×= which applies at the surface of a uniformly magnetized sample, as in Equation 

(19) above. 

The resulting form of the four equations is, as we should expect, identical to Equations (20) except 

that the source terms ρ and J must now refer to all charges and currents, designated by ρtotal and J total. 

But in the process we have defined the association between certain of these quantities and the presence 

of matter which we more usually describe through the polarization P and magnetization M . We 

therefore have 
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where 
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Scharf [16, p.151] refers to this particular set of equations as the ‘Microscopic Equations’, although he 

does not attempt to make the distinction between Jfree and Jmag , taking both together as simply being J. 

These equations are, as should be expected, identical with the free-space Maxwell’s equations, 

Equations (22), except that the charge and current density quantities are now specifically labeled as 
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‘total’ to remind us to include these in all their forms, bound and free. We could therefore have recast 

the free-space equations into these forms merely by appropriately representing all the sources 

involved. 

We may refer to Equations (22) and (23) alike as the free-space or microscopic equations. The free-

space context can be recovered trivially from Equations (24) by taking P to be zero, although we must 

still allow Jmag to remain13 but only for the purpose of including individual intrinsic magnetic dipoles 

such as electrons, atoms etc. Details of the terms in Equations (24) that are required to account for 

macroscopic effects are further explained in Table 3. 

4.2.2 Maxwell’s Equations in Terms of E and H Alone 

Contrarily, if we were to choose E and H as the basis fields, we could equally have an entirely 

different form to the equations in Equations (23) and (24). Following a similar process we now find 
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  (25) 

where 

t∂
∂=

⋅−∇=Π
M

Υ

M
 (26) 

As mathematical models, there is no argument in favor of either the set of Equations (23-24) or 

Equations (25-26). In the one set we have electrical charges and currents alone, with magnetism being 

related to a circulating current through ∇×M  = Jmag , while in the other we have the presence of both 

magnetic poles, identified by Π = -∇⋅M , and magnetic currents due to their motion, 
t∂

∂= M
Υ  (note 

that magnetic poles so defined obey the same conservation law as does electric charge and since Y is 

intrinsically a bound quantity we need not identify it with a subscript). 

Burris [31, p. 9.2] actually introduces Equations (25) together with pole density and pole current 

without further qualification, as though they were the basic entities. Within the definition of the 

Lorentz force given in this same relatively recent article, we have, again without further qualification, 

 µ0H rather than B. The attempt to have everything in terms of E and H rather than E and B may suit 

the purposes of some authors, but this can only add to the general confusion surrounding H and B,  

                                                      
13 In such a case, MdV would represent the dipole moment m, where dV is an arbitrary infinitesimal volume 

occupied by the dipole. Jmag then has to be expressed in terms of ∇×M   by means of the calculus of generalised 

functions. 
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Table 3: A summary of electrical and magnetic source terms and their meanings 

 

particularly in a reference work. At the very least authors who use E and H as the basis fields, with or 

without poles and pole currents, should give adequate cautions so as to prevent any such confusion. 

As pointed out in Section 3.2.4 above, ∇⋅B = 0 alone does not imply the non-existence of poles, rather 

it merely implies the non-existence of free poles. The non-existence of poles, therefore, does not arise 

Source Meaning Key Characteristics 

ρ, ρtotal Electric charge density of all 

charges present 

ρ = ρfree + ρcond + ρbound 

ρfree Free charge density  Charge that is isolated or that is surplus to an otherwise neutral 

body. Need not average to zero locally in space and may support 

direct current, DC, depending on whether free to move or fixed. 

ρcond Charge density giving rise to 

conduction  

Charge that is available to flow in the presence of an electric field 

within a conducting medium.  

ρbound Bound charge density giving 

rise to polarization within a 

material body 

Under the influence of an electric field, the relative displacement 

of the positive and negative components of a bound charge 

distribution gives rise to a polarization, P. Averages to zero 

locally in space and gives rise only to AC currents. 

J, Jtotal Total current density J = ρv + Jmag. At any point in space, the product of the net 

electrical charge density and its velocity. In general this will be a 

function of both B and E. We must also include Jmag (see below) 

in order to account for magnetism. 

Jfree Conduction current, due to 

motion of unbound charges 

ρfree or ρcond 

Jfree = ρfreevfree or ρfcondvcond  as appropriate. The movement of 

bound charges is excluded. The summation is over all available 

free charge types. In general Jfree will be a function of both B and 

E.  

Jbound Current due to motion of 

ρbound tbound ∂
∂= P

J = ρboundvbound. Only bound charges are considered 

and the current is due to their relative motion alone. The 

summation is over all bound charge types. In general Jbound will 

be a function of both B and E. 

Jmag Current giving rise to 

intrinsic magnetism 

MJ ×∇=mag
. Jmag is due to currents or spin at the atomic level. 

in general it is fixed or a function of B, but is independent of E. 

Π Pole density M⋅−∇=Π , a fictitious source for an intrinsic magnetic field. 

ΥΥΥΥ Pole current 
t∂

∂= M
Υ , a fictitious current of poles accounting for time varying 

magnetization 
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out of Maxwell’s equations, which could readily include poles as we have shown, but rather from the 

observed nature of the magnetic ‘force field’, which sides with the solenoidal field B as its origin 

rather than the divergent field H. 

Magnetic poles do not exist, either as free monopoles or dipoles, and so the concepts of pole density 

Π and pole current Y are simply artificial. Furthermore, as they only stand for the macroscopic terms -

∇⋅M and 
t∂

∂M  they are purely auxiliary. In addition, we have the identification of E and B as the two 

field quantities involved in the electromagnetic force, both microscopically and macroscopically. 

Finally, the free-space form of Maxwell’s equations, Equations (22), identifies a specific relationship 

between B and E alone, while we cannot achieve the same for E and H without reverting to poles, 

Equations (21).  All of these points argue towards Equations (23-24) rather than Equations (25-26), as 

being the physical underpinning of Maxwell’s equations as we generally know them. 

4.3 The Standard Form of Maxwell’s Equations 

Maxwell’s equations as we generally know them in the form of Equations (20) lead us back to the 

free-space equations, Equations (28), provided that we:  

• remember the basic quantities are E and B, 

• convert  D to ε0E + P and H to B/µ0 - M  using the constitutive relations, Equations (6),  

• set to M   to zero everywhere, except in the case of any individual intrinsic magnetic dipoles we want 

to keep as ‘free’ quantities14, in which case we associate ∇×M  with the magnetic current, Jmag , 

describing such dipoles, 

• set P to zero everywhere. Since a pair of free charges can account for any free point-dipole, it is not 

necessary to retain ∇⋅P as a local source of bound charge. 

In turn, the free-space equations will lead us back to any form of the macroscopic equations that we 

choose, based either on a simple phenomenological approach or a detailed microscopic approach. 

What advantage, however, is their in choosing the standard form of Maxwell’s equations? Often, when 

we have to solve them, the first part of the process is to find a way of eliminating two of the four 

variables in order to get, say, an equation in E, an equation in H and a final one linking both E and H. 

The quantities D, B, P and M  will follow based on the original assumptions, i.e. the form taken by the 

constitutive relations in the given scenario. We may follow the same basic process starting instead 

with E and B, but the result will be the same. Even with Maxwell’s equations in the form of Equations 

(23) or (25), where we have already reduced them to the unknowns E and B (or E and H) alone, we 

still have to resort to the supporting equations, Equations (24) or (26) in order to bring in the 

properties of the media involved.  

                                                      
14 For example, on the atomic scale, when describing the interaction between the electromagnetic field and an 

individual particle possessing a net magnetic dipole moment. See also Section 4.2.1 and the footnote there. 
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Maxwell’s equations in their standard form, however, do bring the supporting equations into play, but 

this is achieved by taking ∇⋅P and ∇×M , the source terms for polarization and magnetization, together 

with ∇⋅E and ∇×B in the first and last equations to leave us with field terms only in ∇⋅D and ∇×H. 

We can only interact explicitly with ‘free’ entities, be they charges, currents or magnetic dipoles. All 

‘bound’ quantities are involved only implicitly through the characteristics of the media concerned. In 

that sense, the ‘bound’ quantities require to be either solved for or eliminated rather than specified, and 

so in dealing with macroscopic media it is more convenient to use D and H rather than E and B in the 

first and fourth equations. The standard form of Maxwell’s equations, Equations (20), is therefore 

essentially macroscopic in character, whereas Equations (23) still retains the free-space form and 

requires to be taken together with Equations (24) in order to deal with macroscopic media. Equations 

(24) are therefore the bridge between the free-space and macroscopic forms. In the light of our 

discussion in the preceding sections concerning alternative views of H as arising from either poles or 

currents, it must be clear that the role of H here is strictly associated with currents alone and, in 

particular, only free current.  

Finally, we may mention that when the standard form of Maxwell’s equations is quoted in the form 

free

free

t

t

J
D

H

D

B
E

B

=
∂
∂−×∇

=⋅∇

=
∂
∂+×∇

=⋅∇

ρ

0

0

 (27) 

the result is a pair of homogeneous equations based on the microscopic quantities E and B alone, 

together with a pair of inhomogeneous equations based on D and H alone and with ρ free and Jfree as the 

source terms. The pair of homogeneous equations do not involve any charges, currents or magnetic 

sources, and therefore come over from the free-space form to the macroscopic unchanged. On the 

other hand, with the inhomogeneous equations E and B must be replaced with their macroscopic 

counterparts D and H so as to specifically to account for all charges, currents and magnetic sources. 

This form is by no means universal, but it is used for example in [52; 45, pp. 304; 9, p. 6; 15, p. 1; 

53-55]. Any particular reason for preferring it goes unmentioned, but it is perhaps because this form 

carries over directly over into the relativistic formulation [15, footnote to p 1.] but it does also make it 

a little easier both to remember the rationale behind the uses of all four of the field quantities and to 

identify the free-space from the macroscopic quantities.  

5 Special Relativity 

While special relativity is at the very heart of modern electromagnetic theory, it is often considered too 

advanced a topic for inclusion in an introductory discussion of the fundamental theory. Indeed, in spite 

of its compact formalism, or rather because of it, the relativistic formulation of electromagnetic theory 

does not lend itself to easy understanding and it is generally only undertaken as part of an advanced 

mathematical physics course. But, as we have seen, the link to relativity is obvious through the 

existence of the magnetic field itself. First, it gives a full basis for classical magnetic phenomena 
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without the need for artifices such as poles. Secondly, even if we were able to argue for some 

alternative non-relativistic theory, we would be left with the difficulty of explaining how the forces 

between electrical charges in uniform motion could contrive to break Newton’s third law, which they 

may do by Equations (11) and (13). It seems a pity to leave any discussion of the deep impact of this 

fundamental link simply to a mention in the passing. To demonstrate how deep the link is, let us 

review the basic structure of electromagnetic theory based on what we have established so far.  

It has already been mentioned that Coulomb’s law is incomplete in as much as it provides a purely 

static description of the interaction of two charges. Coulomb’s law as applied to moving charges as 

seen through the theory of special relativity results in not just in a single modification, such as 

Equation (13), but in the complete description of electrodynamics including the Lorentz force and all 

of Maxwell’s equations. This is illustrated in Figure 9a. In the diagram, the starting points of the 

classical microscopic theory are Coulomb’s and Ampere’s force laws, Equations (1a) and (11) above, 

which lead to the definition of the electric and magnetic fields E and B, thence to the basic equations 

of electro- and magneto- statics, ∇×E = 0, ∇⋅E = ρ/ε0, ∇×B = µ0J and ∇⋅B = 0, and to the Lorentz 

force, F=q(E + v×B). The Lorentz force, as we have seen, can be argued as evidence for Einstein’s 

Theory of special relativity. That theory having been independently established, however, the Lorentz 

force and the existence of the magnetic field itself can then be derived given only a purely electric 

field. Crossing from statics to dynamics, shown in the green boxes, special relativity can again be 

invoked to show that the time independent equations ∇×E = 0 and ∇×B = µ0J , which we may suppose 

hold in a given rest frame, must transform over to the established time dependent form as per 

Maxwell’s equations within a moving frame. This provides a theoretical basis confirming both 

Faraday’s and Maxwell’s contributions to the theory. As before, H and D are required only in order to 

describe fields in matter.  

A rigorous treatment of electromagnetics within the theory of special relativity is covered in detail by 

several textbooks [22, pp. 380-388; 9, pp. 78-80; 47, pp. 486-495; 56]. Here we only attempt to use the 

simplest results to justify the assertions made above. To this end we show that 

 • a force on a test charge placed between electrically charged plates will be seen to vary depending on 

the velocity of the observer. This paradox shows that the laws of physics based on Newtonian 

relativity are incomplete, 

• this apparent paradox is resolved by applying special relativity to the observed electric force alone,  

• consequently the magnetic force provides evidence for special relativity while conversely special 

relativity provides the exact form of the magnetic force, 

• the time dependent contributions to Maxwell’s equations can be deduced from special relativity 

(Faraday's law of induction and Maxwell’s displacement current). 

In addition, we examine how the theory of special relativity imposes the condition on the free-space 

electromagnetic wave equation that the wave velocity must be independent of the frame of reference 

of the observer, given that these wave equations are just like any other. 
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5.1 Transformation of the Electric Field 

Figure 10 shows an infinite parallel plate capacitor having uniform charge distributions +σ and -σ 

(Cm-1) on each plate. We take our frame of reference as being the ‘rest frame’, in which we, the 

observers, and the charge distributions are stationary. There is no current, and Coulomb’s law alone 

applies so that the electric field is given by 0ˆ /σ ε=E z  and a test charge q lying between the plates 

will undergo a force
0

ˆ q
σ
ε

=F z .  

5.1.1 Demonstration that the Force Depends on the O bserver’s Velocity 

Within  a frame of reference moving with a velocity xv ˆ v=  with respect to the rest frame, however, 

the test charge and both of the surface charge distributions now have a velocity –v, and therefore 

surface current densities K  = ±σv (Am-1) are observed, the negative sign being for the positively 

charged plate. This gives rise to a magnetic field 0 ˆ Kµ=B y  between the plates in this frame of 

reference, as the currents on each plate are equal in magnitude but oppositely directed. The fact that 

we can make B come and go with the frame of reference should be surprising, but of course we are 

already aware that B must be treated as an ‘observational’ effect dependent on E itself rather than on 

an entirely separate magnetic source.  

The current seen in the moving frame results in a net force F on the test charge q given by the Lorentz 

force involving both E and B as found above: 

0
0

0 0
0

2

2

ˆ ˆ ˆ ( ( ) )

ˆ ˆ

ˆ 1

1

q E B

q K

K
q

q
c

σ µ
ε

σ ε µ
ε σ

= + − ×

 
= − 

 

 = − 
 

 
= − 

 

F z x y

z z

z

E

v

v

v

v

 (28) 

The net force acting on the test charge therefore appears less than it was in the rest frame due to the 

factor of 1-v2/c2. This paradox of classical electromagnetism can only be resolved by accepting the 

theory of special relativity. While the theory of special relativity has many conflicts with the classical 

description and offers the prospect of numerous paradoxes within its own framework, paradoxes are 

rare within the closed confines a purely classical description, particularly when velocities nowhere 

near the speed of light are involved. This is one of those rare exceptions, and as we have mentioned 

earlier, it is so obvious as to go almost unnoticed. It is certainly mentioned by few, if any, authors as 

compelling basic evidence for the theory of special relativity, even if they do at some point fully 

acknowledge that magnetism arises out of special relativity! 
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Figure 10a. The field within a moving charged parallel plate capacitor. In the rest frame, there is 

a static charge distribution σ on the bottom plate of the capacitor, and an equal and opposite 

static charge distribution on the top plate. An electric field E between the plates results, and 

there is no magnetic field B.  

 

 

Figure 10b. The field within a moving charged parallel plate capacitor. Viewed from a frame of 

reference moving to the right with velocity v, the charge distributions appear to move with 

velocity –v, i.e. to the left. Therefore in this frame of reference we must have a magnetic field B 

due to the linear current densities K=±σv seen on each plate. This proves that the magnetic field 

is purely an observational effect, an implication of relativity. B is orthogonal to E and to the 

direction of motion, and its magnitude is simply (v2/c2)E. The effect of the motion on the 

attractive force between the capacitor plates is to reduce it, since opposite currents repel, and 

again, this must be an observational effect as all we have done is to change to a moving frame of 

reference, the force in the original frame of reference is unchanged. These conclusions can be 

reached with no a priori knowledge of special relativity. 
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Figure 11 : Current and pole distributions producing identical external fields. A uniformly 

magnetized cylinder is taken to be magnetized, in one case with a surface current distribution K, 

and in the other with a pole distribution σ.  The ‘force field’ for a polar description is shown in 

(a) based on two parallel discs (the pole faces) bearing equal and opposite uniform pole 

distributions. In (b), however, we see the ‘force field’ resulting from the surface cylinder 

carrying a uniform sheet of current such that a linear current density K circulates around the 

polar axis. The external fields are identical, implying that if we specify the one distribution then 

we are automatically specifying the other. But as they are defined on completely independent 

faces of the cylinder, this seems counter-intuitive. While the internal fields appear quite different 

they are trivially related through the curl and divergence of M. 

 

5.1.2 Demonstration that Special Relativity Account s for Magnetic Force  

One of the main results in the field of special relativity is the Lorentz Transform which shows how the 

spatial and time co-ordinates (x, y, x, t) in one frame of reference map over into another frame of 

reference moving with a relative velocity v with respect to it. Almost every elementary text on special 

relativity, for example [57, pp.59-64; 58, p. 34; 11, pp. 375-378; 7, pp. 140-141], deals with the 

Lorentz transform and many show how it can be derived from three basic principles: the speed of light 

is a constant independent of the reference frame, invariance of measurement under pure translations, 

∇⋅ΜΜΜΜ = σ 

∇×ΜΜΜΜ = K  
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and the principle of relativity itself, that is to say, if we transform from frame A to A′ using velocity v 

as a parameter, then the very same transform with the parameter –v will take us from A′ back to A. We 

can express this as  

Lv (x, y, x, t)→ (x′, y′, x′, t′),  

L-v (x′, y′, x′, t′)→ (x, y, x, t) 

The Lorentz transform  Lv and its inverse L-v are  then given by 
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For simplicity we have assumed that relative motion between the primed and unprimed frames takes 

place along the x-direction with velocity xv ˆ v=  as in our example above. 

One immediate conclusion of the Lorentz Transform is that the charge density seen in the primed 

frame is γσ  (not σ/γ !) because in the unprimed frame a charge q distributed over an area dx⋅dy will be 

seen in the primed frame as being distributed over an area dx′⋅dy′ = (dx/γ)⋅dy. This change of scaling, 

known as the Lorentz contraction, comes about because in evaluating the differential dx′, both x and 

x+dx must be taken at the same instant t′ within the moving frame, rather than the same instant in the 

rest frame. The quantity of charge itself cannot be affected and consequently we must have σ′ = γσ 

and Ez′ = γEz. 

Besides length, forces are also observed differently in the primed frame. The definition of force as rate 

of change of momentum still holds valid in relativistic mechanics, but the transformation between the 

forces observed in different reference frames is rather complex because it involves the transformation 

of the observed momentum p as well as that of the observed time t [57, pp. 178-180]. But for a force, 

ẑzF  say, that is acting perpendicular to the motion,x̂v , of the moving reference frame, the component 

of momentum involved is unaltered, p′z = pz  [57, pp. 178-180]. The transformation of 
dt

dp
 associated 

with the force ẑzF  therefore depends only on the transformation of time. The net result for the 

specific situation in which the accelerated body is stationary in the rest frame is F′z = Fz /γ, so that for a 

given force acting on the test charge in the rest frame, the force observed in the primed frame is 

reduced. 

Taking the Coulomb force acting on the stationary test charge in the rest frame on its own, the force as 

seen in the primed frame would therefore be evaluated as  



© IEEE 2008,  Antennas and Propagation Magazine, Volume 50, No 1, February 2008   

( )

( )

( )z

z

z

zF

ˆ1

ˆ
1

ˆ
1

ˆ
1

2

2

2

Eq
c

Eq

E
q

qEc

′









−=

′=








 ′
=

=′

v

γ

γγ

γ

 (30) 

This result is entirely in agreement with the earlier result of Equation (28) that was obtained by 

evaluating the effects of the magnetic field and Lorentz force, thereby resolving the apparent paradox. 

The undeniable conclusion is that transforming the pure Coulomb force seen in the rest frame to a 

moving frame results in a force which agrees with the full Lorentz force acting on the test charge as 

seen from within that frame. The classical result obtained by bringing in the magnetic field as an 

observational artifact together with the Lorentz force completely agrees with the Coulomb force, taken 

on its own, as long as the observational transformations of the theory of special relativity are applied. 

This simple 1-dimensional analysis carries over into a complete 3-d treatment. The only caution is 

regarding the literature on special relativity itself, in that it is quite common to see H used in place of 

B within the expression for the Lorentz force [44; 58, p. 42], but this is perhaps a syntactic error rather 

than a semantic error on the part of the authors, as is no doubt quite clear by now. 

5.2 Faraday’s Law of Induction and Maxwell’s Displa cement Current 

The preceding discussion takes us from Coulomb’s law via special relativity to the magnetic field and 

the Lorentz force, but it does not take us beyond electrostatics and magnetostatics. For a description of 

electrodynamics we require to bring in the explicitly time dependent terms in Maxwell’s equations 

through Faraday’s law of induction and Maxwell’s displacement current. Are these phenomena 

original physical principles or are they also simply artifacts of special relativity? 

In the introduction to Section 5, we supposed a scenario where the time dependent contributions to 

Maxwell’s equations are unknown. Apart from simply introducing time dependence into the equations, 

these contributions are responsible for the coupling between the electric and magnetic fields in a way 

that reaches back even to static fields. That is to say, without them, electricity and magnetism are two 

entirely separate effects, whereas with them they become completely interdependent. As to the 

assertion that this also applies to statics, there is a semantic issue here as to what we mean by static. 

The term ‘static’ must be taken to include uniform motion since what is completely at rest in one 

reference frame may be in uniform motion when viewed in another equivalent reference frame. 

Consequently, a charge that is static within one reference frame may give rise to a current element in 

another. Since we can describe this as ρ → J, we can likewise write ∇·E → ∇×B, that is to say the 

electric field in one frame of reference can give rise to a magnetic field in another, and vice versa. 

In Sections 5.1.1 and 5.1.2 we saw that the connection between static electric and magnetic fields did 

indeed come about through special relativity. We now show how two of the equations of electrostatics 
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and magnetostatics, ∇×E = 0000 and ∇×B = µ0J, need to be modified, so that in doing so that they 

become what we recognize as the two of Maxwell’s four equations that include the time dependent 

contributions, 
t∂

∂− B
 and 0( )

t

ε∂
∂

E
 

Our assumed initial scenario is that we are oblivious to any coupling between the electric and 

magnetic fields or any time dependent terms in the equations, and that it is sufficient to write 

E(r ,t) → E(r ′,t′) and B(r ,t) → B(r ′,t′) under any transformation of reference frame Lv(r ,t) → (r ′,t′). 

We are simply assuming this to be true so that we may consider the consequences. 

If we start with ∇×E in the rest frame and apply the Lorentz Transform, we find ∇′×E in the moving 

frame by application of the general transformation for differentials, which follows directly from 

differentiating Equation (29):  
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We then find 
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It is also to be understood that on the left side of the Equation (32) E is a function of (x′, y′, x′, t′) while 

on the right both E and B are functions of (x, y, x, t). We again identify E
v ×
2c

 with B from Equation 

14b, and we neglect the terms of order v2/c2 that are effectively unmeasurable at ordinary velocities. 

We must therefore conclude that if ∇′×E = 0 pertains in a given reference frame then 0
B

E =
∂
∂+×∇

t
 

pertains in another. This then is the origin of electromagnetic induction - it is indeed a consequence of 

special relativity. 

It would appear that Maxwell’s displacement current would follow from applying the same procedure 

to ∇′×B, but this leads only to higher order terms. However it must be borne in mind that B itself 

should be regarded as the lowest order relativistic correction to E, and it is again to E that we should 

look as the starting point. This time we must ask how 
t∂

∂E
transforms: 
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Here, as previously, it is to be understood that on the left side of Equation (33), E is a function of 

(x′, y′, z′, t′) while on the right both E and B are functions of (x, y, z, t). Given vy=vz=0, it is possible 

to write 
x∂

∂E
v  in the form( )Ev ∇⋅ , which by a standard identity is equal to( ) ( )EvEv ××∇−⋅∇ . 

Finally, we again identify E
v ×
2c

 with the magnetic field B.  

Now if all charge ρ is stationary in the primed reference frame then there is no change in the electric 

field with time so that 0
0 t

εµ ∂
=

′∂
E

0 , while in the unprimed rest frame the charge distribution must 

appear to have a uniform velocity +v in the x-direction, giving rise to the current density  

J =ρv = ε0v∇⋅E. We associate the current density J with a magnetic field B originating from the now 

familiar relativistic correction to the electric field, E
v ×
2c

. In addition we have the term 0
0 t

εµ ∂
∂

E
, 

which will not in general be zero because at a given point the electric field will be changing as a result 

of the moving charge distribution, as in the case of a moving point charge. In the primed frame we 

have a purely electrostatic scenario, whereas in the rest frame we have 0
0 t

εµ ∂ ∇× = + ∂ 

E
B J , again 

neglecting terms of order v2/c2 . This, then, is the origin of the displacement current15. 

While we have achieved these results through a scenario that is only valid for v « c, they turn out to be 

valid in general and fully consistent with special relativity. The time dependent forms of Maxwell’s 

equations that are revealed, however, may in turn be used to show the exact form of the coupling 

between the electric and magnetic fields under a change of reference frame [22, pp. 380-382; 

9, 78-80]:  
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15 Since the displacement current may also be inferred simply by taking the divergence of Maxwell’s fourth 

equation and requiring the conservation of charge, J⋅−∇=
∂
∂

t

ρ one may ask why appeal to special relativity? 

But, going back a step, relativity itself is based on simple and fundamental tenets such as translational invariance 

and conservation laws. While both methods of establishing the existence of the displacement current are equally 

valid, we have chosen this one specifically to illustrate the same connexion with special relativity as with 

Faraday’s law of induction. 
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where the subscripts // and ⊥ denote respectively parallel to v and perpendicular to v, and the factor γ 

can be ignored except at extreme velocities. Note that only the perpendicular parts of E and B are 

coupled by the change of reference frame. Also, the transformed electric field has a strong similarity to 

the field part of the Lorentz force (see 5.3 below).  

Returning to Figure 9a, we see that special relativity is indeed the bridge between electrostatics and 

electrodynamics. As with Ampere’s force law, there is no need to adopt Faraday’s law of induction 

and Maxwell’s displacement current as separate postulates. Coulomb’s law and the theory of special 

relativity are sufficient. 

5.3 Lorentz Force 

In Section 5.2 we saw that under a change of reference frame the transformation of an electric field, 

E′, bears a strong resemblance to the field part of the Lorentz force, E + v × B. Conceptually, we can 

hardly escape from the fact that the Lorentz force must be identical with the Coulomb force, the only 

difference being the velocity of the charge under observation. In the rest frame of this charge, only the 

Coulomb force is ever experienced. Einstein drew attention to this in his seminal 1905 paper [59], the 

relevant part being:  

1.   If a unit electric point charge is in motion in an electromagnetic field, there acts upon it, in 

addition to the electric force, an ‘electromotive force’ which… is equal to the vector-product of 

the velocity of the charge and the magnetic force... [old manner of expression]… 

2.   If a unit electric point charge is in motion in an electromagnetic field, the force acting upon 

it is equal to the electric force which is present at the locality of the charge, and which we 

ascertain by transformation of the field to a system of co-ordinates at rest relatively to the 

electrical charge. [new manner of expression]. 

Accordingly, the equation F = q(E + v × B) is none other than F′ = qE′ within the appropriate frame of 

reference. The term (E + v × B) is simply the electric field E′ perceived by the charge q within its own 

rest frame.  

The form of the Lorentz force is correct for any particle velocity and no approximation is involved. 

According to Jackson [22, p. 191], it has been experimentally verified to very large velocities. The 

question that hangs, however, is what happens inside a magnetic medium? As mentioned in Section 

3.1.2 above, the Lorentz force is still expected to hold good except in special cases where there may be 

close range forces or quantum effects to consider. 

5.4 The Speed of Light as a Universal Constant 

That the speed of light in vacuo is a constant independent of any reference frame was a revolutionary 

concept in its time and is held to be the primary evidence for special relativity. But the significance of 

this is more than purely conceptual and its effects are not simply confined to the peculiar domain of 

relativistic physics, for it has an impact on the solution of Maxwell’s equations for propagating waves.  

The most general and simplest form of wave equation is  
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This equation, applicable to all components of E and B simultaneously, also applies to other linear 

phenomena such as the propagation of sound waves. But we know that electromagnetic waves and 

sound waves are fundamentally different in that the apparent velocity of sound waves is fixed with 

respect to the reference frame in which the underlying medium appears to be stationary, and 

consequently the observed wave velocity depends on the motion of the observer, while on the other 

hand the velocity of electromagnetic waves appears the same in any reference frame. How can both 

systems obey the same equation? 

The answer lies once more in the Lorentz transform. Using Equation (31) to find the transformation of 

the double partial derivatives with respect to x and t, it can be readily verified that the wave equation, 

Equation (35), is obeyed in all reference frames undergoing uniform motion with respect to the 

original rest frame [22, pp. 352-353 and 378]. We can therefore apply the Lorentz transform to any 

solution of Equation (35) and be confident that it will still be a valid solution within the new reference 

frame. A plane wave solution to Equation (35) propagating in the x-direction with frequency ω and 

wavenumber k has a phase at any point along the x-axis given by φ(x,t) = ωt - kx, where ω/k = c. 

Applying the Lorentz transform to x and t, the phase observed in a frame moving along the x-axis with 

velocity v with respect to the rest frame will be given by: 
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Both the frequency ω′and wavenumber k′ are different in the primed frame, while the phase velocity, 

given by ω′/k′, is unchanged. On the one hand the frequency is Doppler-shifted down by a factor of 

c

c

/1

/1

v

v

+
−

, whereas on the other the wavelength is observed to increase by exactly the same factor so 

that there is no change in velocity.  

For a sound wave, however, the ratio ω/k is not the speed of light, but speed of sound, say cs , which is 

considerably smaller. Accordingly, to first order in v2/c2 we have ω′ = (1 - v/cs)ω and k′= k, so that we 

have ω′/k′ = cs-v, which indicates both a Doppler shift and a change in apparent sound velocity. 

Conversely, no change in wavenumber (or wavelength) is observed. This all conforms to what we 

would expect at low velocities. Because the wavelength is unchanged, any Doppler shift must be 

accompanied by a change in velocity, whereas for electromagnetic waves in free space the frequency 

and the wavenumber change by exactly the same factor such that the speed of light remains invariant. 

Although the results of a change of reference frame are characteristically different for sound waves 
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and electromagnetic waves in free space, they nevertheless obey the same wave equation without 

contradiction. The transformation properties of the wave are built into the transformation of 

coordinates rather than the equation itself, and only when the velocity of the wave is identical to the 

speed of light in vacuo is it invariant under a change of reference frame. For electromagnetic waves in 

matter, however, when the wave velocity, cm, is significantly different from c, then ω′/k′ ≠ ω/k.   To 

first order in v, cm would be shifted by an amount approximately equal to  
c

cm










−⋅

2

2

1v- . While in 

general, the shift amounts to at most hundreds of meters per second in normal terrestrial situations, in 

extremely high velocity ionized gases, say, it could be quite significant. Nevertheless, the result forms 

the basis of Fizeau’s experiment [60; 57, pp. 68-70], which, by means of an interferometer, produced a 

measurable result for the shift in water flowing at a modest speed. The significance of this at the time 

was that it produced less than half the value that would be expected in an ether based theory where the 

propagating wave would be borne along by the traveling medium.  

6 Discussion 

6.1 Is A Magnetic Field Really Necessary? 

Given that the magnetic field arises from special relativity, as discussed in Section 5, and in particular 

that fact the whole of electromagnetic theory simply stems from treating Coulomb’s law according 

with special relativity, can we not dispense with the notion of a magnetic field altogether and simply 

consider everything in terms of a proper relativistic treatment of the electric field? There are two main 

problems with this notion, however. One is that we prefer to avoid applying relativity theory to 

everyday phenomena, and the other is that we would have to consider separate reference frames for 

each different velocity involved, which is clearly impractical in all but the most trivial of 

circumstances. In particular, how would circulating currents be dealt with? The concept of a magnetic 

field, therefore, simply provides a straightforward method of dealing with this complex situation so 

that we can evaluate the forces due to any arbitrary collection of moving charges that is effectively 

inclusive of the relativistic corrections to the observed electric forces. 

From a more elementary educational standpoint however, there is nothing overwhelmingly difficult 

about the modified Coulomb’s law as given by Equation (13). The problem with forces that do not 

balance may be used as a means of touching on the link with special relativity, and of course it can be 

pointed out that on a practical footing all is well for closed circuits. It embodies the basis of 

magnetism and does not necessarily require explanation in terms of special relativity. As shown in 

Figure 9b, it can be taken as the starting point from which everything else follows in a consistent 

manner. Split into its two component parts, electrostatics and magnetostatics can be developed from a 

common footing. The connection between electricity and magnetism will therefore be recognized from 

the outset. 
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6.2 Equivalence of Solutions Based on Magnetic Pole s and Currents 

That two apparently distinct models of intrinsic magnetism - one based on poles and the other on 

circulating currents - should give identical solutions is more than a little surprising. It seems to imply 

that  whenever we specify ∇⋅M  throughout the volume of a particular medium, then ∇×M  is 

automatically determined, and vice versa. Indeed, ∇⋅M  and∇×M  must coexist in a form of duality. We 

know that by using Maxwell’s equations in the form of first Equation (23) and then Equation (25), 

both approaches must provide fully equivalent field quantities, as illustrated for example in Figure 11, 

but due to the irreconcilable nature of solenoidal and divergent fields, the characters of ∇⋅M  and ∇×M  

are very different. Even their spatial distributions are quite different, which all adds to the difficulty of 

seeing how this equivalence is possible.   

Surprising or not, a full mathematical analysis does demonstrate the complete equivalence of these 

two descriptions [61]. While trying to understand this is a fascinating mathematical conundrum in 

itself, perhaps somewhat disappointingly it seems to have no great relevance from the point of view of 

electromagnetic theory. It suggests that the all-too-neat equivalence of the two different descriptions is 

more on a mathematical basis rather than a physical one. Nevertheless, it can be very confusing as, 

rather than having a single view, we tend to be split between two views, a simpler non-physical view 

on the one hand and a somewhat more complex physical view on the other. If, however, we put the 

pole description out of our minds, the problem no longer exists. All the same, the natural philosophers 

among us may wish to ponder as to why this tantalizingly close correspondence exists at all. Pole 

theory is so simple, it is correct in its results for the fields, and yet it gives the wrong behavior for the 

‘force field’ inside a magnetic medium in that  

• the force on poles follows H while the actual force detected by any infinitesimal dipole depends on 

B rather than H;  

• within a medium consisting of current based dipoles, a test dipole tends to align parallel to the 

dipoles of the medium, while in a medium based on polar dipoles it would tend to do the opposite. 

Even now, on the surface it could be possible to dismiss these issues on the grounds that it is, 

practically speaking, a simpler alternative to the somewhat more cumbersome circulating current 

theory. But, in the end we cannot accept as the basic theory something that is conceptually wrong, 

particularly when we already have a perfectly sound theory, albeit a little more mathematically 

difficult. In fact, the only real difficulty lies in avoiding the misleading notions and nomenclature left 

over from the pole theory, as discussed in Section 2 above. It would make matters considerably easier 

if we had never ventured down that route in the first place.  

In the meantime, it is interesting to note that if magnetization were accounted for by a combination of 

both current and polar dipoles, as considered possible even in Maxwell’s time, things would be much 

more complex. In order to describe this situation we would have to divide up the magnetization M  into 

M p for polar magnetization and M I for the circulating current based kind. The ‘force field’ for our 

cylindrical sample would then be represented by a combination of Figure 11a for M p and Figure 11b 

for M I. One could arrive at the seemingly paradoxical situation where, with balancing proportions of 
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each type, the resulting ‘force field’ would be all but zero on the interior of the sample! Without trying 

to analyze this situation too deeply, it does appear to be quite implausible. It could make an interesting 

academic exercise, but as far as the known state of the universe is concerned we can say that the ‘force 

field’ in the interior conforms to Figure 11b alone. This is, therefore, just the same thing as saying that 

magnetic poles do not exist even as pairs, or that ∇⋅B = 0 holds not only on a macroscopic scale but on 

the microscopic scale too. As far as we now know, there is no element of space small enough to be 

able to isolate a single pole from a dipole pair, or even to detect an imbalance in pole density. 

6.3 Symmetry of Maxwell’s Equations and Choice of U nits 

A number of writers have commented on the form or symmetry of Maxwell’s equations under 

different systems of units, particularly regarding the appearance or non-appearance of particular 

constants, primarily 4π and c [22, p. 618; 62]. The fact that both ε0 and µ0 appear in the free-space or 

microscopic equations, Equations (22) or (23), and not in the macroscopic equations, Equations (20), 

however, should not be regarded as signifying any particular advantage or disadvantage either way. 

However things may be arranged, two independent constants are inevitably required so that we may 

relate both the electrical quantities to the inertial and the magnetic ones to the electric. Here the 

situation, in SI at least, is that with the microscopic forms the constants appear in Maxwell’s equations 

while with the macroscopic form they appear in the constitutive relations, as in Equation (6) above. In 

general, however, we may choose where the constants occur and set the scale of measurement of E 

and B by their magnitude, but no more.  

Today, Gaussian units and SI are the main contenders across the scientific and engineering world. The 

preferred SI system [63; 64], in which has µ0 is given as 4π×10-7 NA-2 and ε0µ0 = 1/c2, is at least 

consistent over all physical quantities, not just electromagnetic, and is defined consistently with the 

modern view of magnetism. The derived electromagnetic units in SI are laid down by the International 

Electrotechnical Commission, IEC [33], and the poles embodied in the earlier MKS system have been 

quietly dropped.  

As to the Gaussian system, this is still to be found in ISO 31-5:1992 [65]. However, its definitions 

vary from those given in IEC60050 and in particular while the definition of H through its curl does 

avoid poles, it seems of little practical use. As to the convenience of using these units, it is not always 

helpful to have the terms B and H being dimensionally the same (irrespective of units), for the 

temptation to interchange them casually is too easy to fall into. It is also a definite inconvenience to 

have to mentally adapt equations and units when going from one published work to another. 

Even though the use of systems of units other than SI is now deprecated, it would still be valuable to 

retain formal definitions of Gaussian units that are consistent with SI. In this way it could be made 

clear that all the definitions have been unified. Explicit mention of magnetic poles being no longer 

valid would be also helpful in the short term. Giving a conversion factor, as for example in IEEE 

Std270-2006 [66] where the gauss is given as 10-4T and the oersted as 250/π Am-1, is helpful, but it 

would be even more so if we were reminded that these are to be taken as measures relating to the 
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modern definitions of the magnetic field quantities, as in the SI system, as opposed to the old forms. 

The stance of the IEC appears to be somewhat different. The terms oersted and gauss are not to be 

found in IEC 60050 and so it can offer no guidance as to their usage and meaning. This is 

understandable as far as preserving the integrity of the SI system is concerned, but it leaves no way of 

finding a valid definition of those other terms and units that we still frequently have to deal with. 

There is, however, no shortage of definitions to be found and the old versions seem to turn up just as 

often as the new. 

6.4 Choice of Field Variables 

Maxwell’s equations in the form of the free-space and microscopic equations, Equations (22-24), are 

stripped to the bare essentials, leaving no ambiguities as to the roles of the field quantities, and making 

it absolutely clear that the fields themselves originate entirely from the static and dynamic effects of 

spatial charge distributions. While we accept that this must be taken to include intrinsic magnetic 

effects, i.e. those arising from electronic orbital angular momentum and particle spin as opposed to 

observable current, their notional representation in terms of a microscopic current is not affected. 

In terms of practical application to situations including real matter, the auxiliary fields D and H, 

preferably in the form of Equations (6) above, play a significant role in facilitating a model. Moreover, 

they obey complementary boundary conditions to E and B, whereas P and M obey none in particular. 

It is strange to consider in retrospect that, had the theory originally developed from the proper free-

space form of Maxwell’s equations, Equations (22), as a starting point, and then D and H had been 

introduced for just the purpose of describing matter, the resulting field H would still turn out to be the 

same as the field that was originally introduced as the force field based on a magnetic pole description. 

On the other hand it was B that was originally introduced as an auxiliary field in order to facilitate the 

description of induced magnetization! Serendipitous this may be, but nevertheless a historical accident 

that has led to a longstanding source of confusion. While the major textbooks are correct in their 

reference to the respective roles of B and H, few have done much to improve the basic understanding, 

either taking it as axiomatic or convention or leaving any explanations to a bare comment or footnote. 

6.5 The Concept of Free and Bound Quantities 

There is more significance to terms free and bound than at first meets the eye. At the simplest level, 

the term ‘free’ applies to isolated charges that we can cause to flow under the influence of an imposed 

electric field , if free to move, while the term ‘bound’ simply means all other charges which, being 

within a medium  are not free in this sense but which may nevertheless be displaced to some degree. In 

the same sense, magnetic dipoles are almost always bound, as there is no magnetic equivalent of 

conduction. 

Obvious as this may seem, the true significance of ‘free’ and ‘bound’ to electromagnetic theory is that 

free charges and currents are sources that we can manipulate directly, while the bound charges and 

magnetic dipoles are affected only indirectly as a result of this manipulation. For example, if we loop 

several elastic bands end to end so as to form a chain, we can exert a stretching force on the whole 
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chain by gripping each of the two end bands and pulling. All the intermediate bands stretch or relax in 

response to the movement of the outer two. In this sense, the two end bands are free (to be 

manipulated) while all the others are bound (to each other). Given the force constants of all of the 

bands, we can work out the elongation of each band from the stretch applied to the two end-points 

because we know that the same force must apply to each band along the length of the chain. We can 

therefore eliminate the intermediate bands simply by evaluating an average force constant for the 

whole chain from the sum of all the individual displacements divided by the applied force. 

The free quantities therefore move directly under the influence of applied forces, whereas the bound 

quantities move only so as to remain in equilibrium. The part played by the bound quantities is that 

they affect the net force seen by the free ones, and in order to solve specific problems, we generally 

need to eliminate the bound quantities from the equations through supporting equations such as the 

constitutive relations and J = σE in the case of conduction. Note, therefore, that even conduction 

charges, even though free to move, can be considered as ‘bound’ in this sense. We have therefore 

labeled them separately as ρcond so as to avoid any confusion. This distinction between free and bound 

quantities is therefore the main motivation for Maxwell’s equations being written in terms of B, E, H, 

D, ρfree and Jfree as in either Equations (20) or (27) above.  

Care must be taken, however, because this does not mean to say that problems can be readily solved 

with reference to the free quantities alone. For example, if a point charge qfree in free space is placed at 

a given distance from the plane surface of a semi-infinite dielectric body, what is the resulting electric 

field? This is determined not only by the single free charge, qfree, but by the bound surface charge 

density σbound that is induced on the dielectric’s surface. We cannot simply use the equation ∇⋅D = ρfree 

on its own, which clearly would have trivial results. Solutions must still be found be found for both D 

and E, and this is achieved by applying Maxwell’s equations in each region separately, while uniting 

these by bringing in the boundary conditions given in Equations (9) above. The issue here is that the 

boundary conditions form an essential part of the supporting equations. Jackson [22, pp. 111-113] 

solves this problem by the method of images, without the aid of which the task would be far from 

trivial. This is a particular example of technique being an expedient to solving the problem rather than 

an aid to understanding the true nature of the problem itself.  That is not to say that we do not learn 

from solving problems, but it is a bad thing to possess more by the way of technique rather than 

understanding. 

6.6 Terminology and Definitions 

Following the discussion of Section 2.5 above, renaming the fields more appropriately would do much 

to clarify their respective roles [9, pp. 241-242]. The problem is that while the original names appear 

in various forms and some are misleading to various degrees, they have been in use for a very long 

time.. In fact it is now quite common to refer to the more or less universal symbols B, D, E, H, M and 

P or terms such as B-field or H-field in place of the formal field names simply as a means of avoiding 

such problems, and this article is no exception. 
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With polarization and magnetization there are no real issues, the main problem lies with the magnetic 

field. Magnetic flux density is the SI preferred term for B, but this seems a little distant from its direct 

role in magnetic force. The term magnetic induction is widespread but has the same drawback. As 

previously discussed, the problem with a name like magnetic force field is that in this case the force is 

of a different vector character to the field and it does not even point in the same direction. It could be 

renamed simply as the magnetic field, which is now fairly common usage for either B or H, but it is B 

alone that truly deserves the name. Even the IEC definition [33, IEV 121-11-19] acknowledges the 

common use of the name magnetic field. Unfortunately the IEC definition of magnetic field [33, 

IEV 121-11-69] includes “H together with…B”. Although this seems logical enough as things stand, 

this arises only because we are presently stuck with two fields appearing on a par with each other. It 

means that we cannot associate the term magnetic field with just one variable, as would be not only 

preferable but logical. Now when we wish to do so we must specify one or other of the IEC preferred 

terms, magnetic field strength [33, IEV 121-11-56] or magnetic flux density16 [33, IEV 121-11-19], 

and it is this very choice that brings about the difficulties of which term should be used. It is therefore 

also doubly unfortunate in that B is given second place to H in the definition of magnetic field, nor is 

it the one that bears ‘field’ within its name.  

Since the role of H can be considered auxiliary, a description already used by some authors [39, p. 18; 

42] it could be renamed as auxiliary magnetic field, as suggested through Section 2.9. The advantage 

with B named the magnetic field and H as the auxiliary magnetic field is that there can be no doubt as 

to the roles and no need for yet another separate term to describe them both together as the magnetic 

field. As to other possible names for H, the problem with the term macroscopic field is that it has often 

been used to refer to any field within matter simply to distinguish it from the same field in free space, 

and it would also be useful to be able to refer to the electric field quantities in like terms.  

In keeping with the names for the magnetic quantities, E would simply be referred to as the electric 

field, as is now common, while D would be referred to as the auxiliary electric field. There is some 

ambiguity associated with the term displacement, for example Beneson, Harris et al refer to the 

separate concept of displacement flux [7, pp. 451-452]. In the IEC nomenclature [33, IEV 121-11-40], 

displacement is secondary to the preferred term electric flux density, but the latter seems to have less 

currency. 

As to the definitions themselves, as opposed to the names, the IEC International Electrotechnical 

Vocabulary, IEV, [33] appears to offer the best source in terms of completeness and consistency. 

There is no difficulty with the definition of either B or M , so that H is best defined through 

H = B /µ0 - M [33, IEV 121-11-26]. In this way the concept of poles are avoided altogether, as is the 

notion of “ability to produce magnetic induction”. As to D, the physical definition for displacement is 

now somewhat obscure (although it is in fact given by Beneson, Harris et al [7, pp. 453]) and 

displacement is now readily defined simply by D = ε0E+P [33, IEV 121-11-40] (although not by either 

                                                      
16 Magnetic induction does not appear in the index and is given only within of the definition of magnetic flux 

density as an alternative name. 
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ISO 31-5 or IEEE Std270 which both use ∇⋅D = ρ). While IEEE Std270 and ISO 31-5 are generally 

consistent with IEC 60050, there are some other differences, e.g. in the definition of H. While IEEE 

Std270 does use H = B /µ0 - M , no separate definition for Magnetization is provided. On the other 

hand ISO 31-5 uses a different definition based on ∇×H. There is therefore a lack of harmony and 

consistency between the various versions of the electromagnetic standards in some of the most crucial 

areas. 

The existing names for the field quantities are summarized in Table 4 below together with suggested 

preferable forms. If these or similar names were adopted, both B and E would be clearly recognizable 

as the primary fields with D and H being clearly secondary in nature, and so over all four such 

electromagnetic field quantities it is only a matter distinguishing which is electric and magnetic, and 

which is auxiliary rather than primary. Unlike changes in the definition of units as suggested in 

Section 6.3 above, however, such changes would not be easy to bring about. It would inevitably be the 

subject of much debate – which would in turn lead to the proposal of more names or even 

combinations of old and new. But the problem does exist and so it would be better tackled sooner 

rather than later. At the moment it seems the only names that can be reliably agreed on are the actually 

the bare symbols B, D, E, H, M  and P and so a complete break with past connotations is still 

something only to be hoped for! 

6.7 Lorentz Force 

If matter did include an intrinsic magnetic dipole that was not ultimately equivalent to a circulating 

current, the only description that would be available for this would be that of an inseparable pair of 

magnetic monopoles. If this were indeed the case, then the picture of a permanent magnet’s ‘force 

field’ would need to be as in Figure 11a.  Since Figure 11b would still apply to an electromagnet, the 

Lorentz force might then take a form such as 

0( ( ))mag curq µ= + × +F E v H B  (37) 

This echoes Kitaigordsky’s approach, Section 2.7, which appears to be in line with the historical 

development of the subject according to which B is for currents while H is for magnets. As shown in 

the 11a, the ‘force field’ within a magnet would tend to be antiparallel to that which emanates from the 

pole faces. As we have stressed, this is entirely different from the situation in which the elementary 

dipoles are equivalent to a circulating current where the macroscopic ‘force field’ within the magnet is 

as shown in Figure 11b with the ‘force field’ being continuous from the inside of the magnet out 

through the end faces.  

But if we do accept that the Equation (3) for the Lorentz force is entirely correct in all situations, then 

this is consistent only with the ‘force field’ of any sort of magnet being as shown in Figure 11b. All 

known magnets, therefore, must be equivalent to a circulating current (even for those originating from 

elementary particle spin which we cannot actually describe by a classical specific circulating current). 

Only circulating microscopic currents can sum to produce such a macroscopic picture. 
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Table 4: Summary of electromagnetic field names in use with proposed replacements.  

The existing names in bold are the current IEC nomenclature in which, problematically, 

magnetic polarization has a separate definition from magnetization. It refers to µ0M as opposed 

to M, a subtlety that offers up yet another potential ambiguity.  

Field Existing Names Proposed Names 

E 

Electric Field Strength Electric 

Field 

Electric Field Intensity 

Electric Field 

P 

Electric Polarization 

Polarization  

Dielectric Polarization 

Electric Polarization 

D 

Electric Flux Density 

Displacement 

Electric Displacement 

Dielectric Displacement 

[24, p4.6; 76]  

Auxiliary Electric Field 

B 
Magnetic Flux Density Magnetic 

Induction 
Magnetic Field 

H 

Magnetic Field Strength 

Magnetic Field 

Magnetic Intensity 

Auxiliary Magnetic Field 

M 
Magnetization 

Magnetic Polarization 

Magnetization 

 

Finally, since the Lorentz force is entirely consistent with the theory of special relativity as applied to 

the electric field, there can be no remaining doubt that the term B therein really does mean B in all 

contexts. 

6.8 Energy Density 

In the literature, the energy density of an electromagnetic field is often expressed in different forms, 

either the free-space version, Equation (38a) below [67; 45, pp. 70 and 241], the macroscopic form 

such as (38b) which applies only to linear media [22, pp. 189 and 205] (almost always applicable to 

dielectric, diamagnetic and paramagnetic media, but not ferromagnets), and the general form (38c) 

which can be integrated in principle to find the energy density in any medium [15, p. 8] 

2 2
0

0

1 1

2 2
E Bε

µ
= +E   (38a) 
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HBED ⋅+⋅=
2

1

2

1
E  (38b) 

BHDE ddd ⋅+⋅=E  (38c) 

The energy density free space is unambiguously given by Equation (38a). Equation (38b) is a fairly 

clear extension of Equation (38a) which requires no particular interpretation. However in Equation 

(38c) things are not so obvious because in the electric contribution the differential applies to the 

auxiliary field, whereas in the magnetic contribution it applies to the primary field. We understand 

that for the electric field, E is the force field and that the work is done by the movement of charge as 

represented within dD. With the magnetic field, however, if we believe that B is responsible for the 

force while H embodies the movement of magnetic dipoles being affected by that force, why do we 

not have B⋅dH rather than H⋅dB ? H⋅dB is what we would expect from a polar theory of magnetism, 

and so surely it should be the other way round in the modern theory. But this is not the case. 

If we do work in the process of changing an electric field, we do so by moving free charges about. As 

discussed in Section 6.5 above, bound charges are not accessible to be moved directly and they are 

moved only as a consequence of moving the free charges, since this changes the electric field 

throughout the system. The bound charges are affected implicitly since not only do they follow the 

changes in the field, they contribute to them in turn. Provided we make any change sufficiently slowly, 

however, all the bound charges will remain in equilibrium throughout the change process and the work 

done in their movement is therefore zero. The work we do in moving the free charge, however, must 

still equate to the resulting change in energy stored in the entire system. There is therefore a 

considerable difference between the concept of energy density in free space and within a macroscopic 

medium. Let us look at Figure 10 in the entirely fresh context of a parallel plate capacitor filled with 

some dielectric material. In 10a, if the charge density σ on the parallel plate capacitor is made up of 

free and bound charge densities, σf and σb respectively, the electric field between plates is (σf -σb)/ε0 

and so the work done per unit area in moving a quantity of free charge δσf  from one plate to the other 

is (σf -σb)/ε0⋅⋅⋅⋅δσf  . If the bound charge is zero, this integrates to give the electric part of Equation (38a), 

otherwise it gives the electric part of Equation (38c), since we can identify σf with D, σb with P and 

(σf - σb)/ε0 with E. 

As to magnetic energy, there are no free poles to move about and all magnetic dipoles can be 

considered as being bound. The nature of the Lorentz force itself is that no work is done on a moving 

charge that is undergoing a force of the form v×B, as such a force has no component in the direction of 

motion.  A change in magnetic energy, however, can be brought about through Faraday’s law of 

induction as a result of a change in current. Consider now Figure 10b and let us allow the possibility of 

the dielectric being magnetic. The current density, K, in the top plate crosses the magnetic field, B, 

perpendicularly. A change purely in the magnitude of the current density will change the field, which 

in turn will generate an electric field E through Faraday’s law of induction. This field will tend to 

oppose the change in current and so will be in the x-direction, while 
t∂

∂− B
must be in the y-direction. 
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Consequently 
t∂

∂−=×∇ B
E reduces to

dt

dB

z

Ex -  =
∂

∂
. We need only be concerned with Ex within the 

plate itself because the apparent current density Kfree exists only there. Furthermore, as B vanishes 

entirely outside the plate then so must Ex. We must therefore have 
dt

dB

z

Ex -  →
−
δ

0
 at the plate, where 

δz is the ‘thickness’ of the current sheet. In other words
dt

dB
zEx δ= . The bulk current density, Jfree , 

however, is simply K free /δz. We then have the rate of doing work, per unit volume, given by 

dBKdW
dt

dB
z

z

K

E
z

K
dt

dW

free

free

x
free

free

=⇒

⋅=

=

⋅=

δ
δ

δ

EJ

 (39) 

Bearing in mind that the magnetic field B itself is due to the total current including any magnetic 

current, for our configuration we have in the steady state B = µ0(Kfree + Kmag), which can be seen to be 

the equivalent of B = µ0(H + M). When the medium between the plates is non-magnetic we have 

Kmag = 0 and the result dW = KfreedB may be integrated using the relation B = µ0Kfree  to obtain a 

magnetic energy density 2

0

1

2
B

µ
=E , which establishes the second term of Equation (38a).  

Otherwise, since Kfree equals H, we have the more general form dW = H⋅dB when the medium is 

magnetic. This is consistent with the magnetic part of the energy density differential being as in 

Equation (38c). The energy change arises out of moving the free current against an electric field that 

originates from a change dB in the magnetic field. Consequently it has nothing at all to do with any 

movement of currents or magnetic dipoles against a magnetic force. The magnetism in a medium only 

comes into play indirectly through the magnitude of the electric force that is produced by, and in turn 

resists, a given change in current.  

While for the electrostatic energy E⋅dD may represent electric field × (charge density × dz), H⋅dB 

effectively represents (charge density × velocity) × (electric field × dt). For the electrostatic part we 

are moving free charge against an electric field and integrating along the path of the charge.  For the 

magnetic part, current is moving against an induced electric field and we are integrating over the time 

during which the field changes. Given that electrostatic energy is a form of potential energy, the 

comparison has been drawn between magnetostatic energy and kinetic energy [23, p. 230; 3, Vol. 2, 

pp. 197-198 and 271-276]. If the mechanical analogue of Equation (38a) is taken as 

2
2
12

2
1 vmkxmech +=E , then Equation (38c) becomes dEmech = F⋅dx+v⋅dp   where F is force, x is 

distance, v is velocity and p is momentum. If the magnetostatic energy were associated with poles in 

the same way that electrostatic energy is associated with charges, both would constitute forms of 

potential energy and integrating to find the work done would be along the spatial path in both cases. 

We know that this is not the case, but it does lead to a tempting but fallacious interpretation of H⋅dB as 
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being magnetic field × (pole density × dz), analogous with electric field × (charge density × dz) as in 

the case of E⋅dD. The major difficulty with this analogy is, of course, the identification of H with a 

force field similar to E. In addition, it would imply that the electromagnetic energy density E  was 

entirely in the form of potential energy rather than potential energy plus kinetic energy, which is of 

course necessary for any wave equation to exist. Equation (38c), therefore, is to be treated with care. It 

implies no such analogy or pairing between E and H or with D and B. 

6.9 Poynting Vector and Momentum Density Vector 

The Poynting vector, defined by S = E×H is generally accepted as defining a flow of electromagnetic 

energy density [44, pp. 321-322; 9, pp. 131-135; 22, pp.189-190] on the assumption that Equation 

(38c) holds good for time-dependent fields. On the other hand p = ε0E×B has been interpreted as an 

electromagnetic momentum density as discussed in Section 3.1 above. Note that the Poynting vector is 

normally taken to apply to the energy flow in waves, while the electromagnetic momentum density 

can also be considered to be associated with moving charges even when they do not radiate.  

In free space we have S = E×B/µ0 and so there is ample scope for confusion. The reason why H 

appears in the one form and B in the other is hard to argue in fundamental terms, as both S and p are 

mathematical constructs based on Maxwell’s equations. In the derivation of the Poynting vector, 

however, Jfree⋅⋅⋅⋅E is taken to be the rate of doing work in the movement of charge. For the momentum 

density vector, however, the Lorentz force, is taken as the rate of change of mechanical momentum. 

Written in the form F = ρE+ J×B, ρ  and  J are the total charge and current respectively, involving all 

bound and magnetic quantities. This certainly gives a clue as to why H appears in S while B appears in 

p, but it is hardly an intuitive matter. Not all issues regarding the correct use of H and B are therefore 

easily resolved and, as with the Lorentz force, care must be taken to use the correct definition and to 

avoid confusing the issue with convenient alternative forms because we simply prefer to use H rather 

than B, or vice versa, in various circumstances.  

6.10 B-H Loop 

The B-H loop, as it is called, is a typical method of measuring the basic magnetic characteristics of 

ferromagnetic materials [22, pp. 153-154; 9, pp. 125-126; 45, pp. 282-283]. A coil of wire is wound 

around a toroidal sample of the material under investigation. A low frequency AC current is applied to 

the coil and the voltage induced across the coil is measured. 

Given all that has been said, it seems perplexing that in this measurement we vary H, the auxiliary 

field, while measuring the resulting value of B, the primary field, rather than the other way around. In 

the electric counterpart, where we would apply E to a dielectric-filled capacitor and measure the 

resulting field D in terms of the amount of free charge displaced, we can generate E by applying an 

AC voltage and infer D from measuring the current that flows, and so why can we not measure H 

versus B in a similar manner? The temptation is of course to assume that B, being the actual magnetic 

field, should be the independent variable, but unlike the electric counterpart, in order to generate the 
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field we must start with a current. While the current does produce a magnetic field B, we cannot say 

directly what the resulting magnitude of B is, as it depends not only on the applied current but on the 

induced and permanent17 magnetic currents as well. We can, however, infer H directly from the 

integral form of Maxwell’s fourth equation because it depends only on the free current in the coil and 

the given geometry. On the other hand, from Maxwell’s second equation we can measure B directly in 

terms of the back EMF generated as a result of the changing magnetic field. In effect, we can readily 

measure B versus H, but not so the other way around, just as we can we can readily measure D versus 

E, but not so easily the other way around, simply because we are applying and measuring voltages 

and currents. If we apply a voltage we vary E directly, and if we apply a current we vary H directly. 

The use of E and H as the ‘variables’ is therefore unrelated as to which is the principal field and which 

is the auxiliary one. 

Within a typical B-H loop, however, we can see that the material magnetically saturates when the 

value of the applied field, H, is high enough. Here, B ceases to increase rapidly with increasing H. 

While it is difficult to separate cause from effect in a linear medium where B and H or D and E are 

simply proportional, the saturation of B seems to suggest that H represents the driving force and B the 

resulting state of the material. What we really mean is that H represents the cause and B the effect. 

Inside the sample, the magnetic field that is acting to produce a torque on the magnetic dipoles is still 

none other than B, the only difference being that the value of B depends not only on the applied 

current but on the internal state of the material as determined by the magnetization M .  

In the case of the dielectric example, the applied electric field depends on the applied voltage and 

given geometry. The sample will change its internal state, or polarization P, as a result of the free 

charge arriving on the capacitor plates, but in the steady state the free charge and polarization must 

come to an equilibrium such that that the resultant electric field within the capacitor is equal and 

opposite to the applied field, which we can of course measure directly from the voltage and given 

geometry. The situations are not dissimilar, the distinction lies in the variables that we can control 

directly and indirectly, as per the discussions of free and bound quantities and energy density in 

Sections 6.5 and 6.8 above.  

To conclude, it is worth noting that in the case of the capacitor, it is possible to reverse the situation 

and directly control the free charge, and therefore D, by applying a known current for a given time, 

while measuring the resultant E through the voltage between the capacitor plates. Similarly, it is 

possible with the B-H loop to apply a voltage pulse to the coil and measure the resulting current so as 

to vary B while measuring H, but there is the considerable practical difficulty that as the available 

change in magnetization decreases, the current becomes very large! We point this out, however, 

simply to emphasize that there is an arbitrariness about which variable is independent or dependent 

and that the conceptual association of the independent variable with the force field is somewhat of a 

red herring. 

                                                      
17 In this situation the permanent magnetisation itself may be varying, but it nevertheless ‘permanent’ can be 

taken to mean ‘still present when all free and induced current is set to zero’. 
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6.11 Flux and Lines of Force 

From the earliest lessons in the science of electricity and magnetism, lines of force are introduced in 

order to make the unfamiliar notion of a field easier to grasp. Indeed, the concept arose in the early 

history of this science as a means of describing something, like the wind, that was known to exist and 

the effects of which could be measured, but which could not be seen. This was later given a more 

rigorous footing by defining the number of lines of force that emanate from a unit charge or pole, 4π 

to be precise [13, p.40]. The original idea for envisaging the field is still valid, but there is probably no 

continuing need to have a rigorous defined relationship between the number of lines and the actual 

field strength, which, after all, is really quite arbitrary. A problem arises, however, if it is taught that 

lines of force emanate from a point. This may be true for an electric field, but it should not be for a 

magnetic one, in spite of the fact that the easiest way to demonstrate the idea is to dust iron filings 

over a surface such as a piece of stiff board under which is held a bar magnet. The next step in this 

analogy between the alignment of the filings and the field is to deduce that the magnet has ‘poles’. 

These poles, which correspond to the convergence of the lines at the ends of the magnet, do not exist – 

as we would realize if we used a hollow solenoid rather than a permanent magnet. In fact, if we wound 

a large enough cylindrical solenoid through the board, with the axis of the solenoid lying in the plane 

of the board, the trick with the iron filings would reveal no poles. The apparent lines of force would 

enter into the ‘magnet’ at one end and pass out through the other without converging on any such 

poles.  

In the iron filing experiment, each filing acts as an induced dipole, the nature of which is like a 

miniature compass needle. As in Section 2.9.3 above, we can still identify the magnetic ‘force field’ 

with the alignment of a test dipole, rather than with the supposed path of a free pole. It is perhaps 

unfortunate that the term pole is the root of the word dipole, but the term dipole is universal, even in 

electric and radio terminology. At least with dipoles, however, we can keep the same visual picture 

while giving it a basis that is free from the concept of individual poles. Beyond their value as visual 

aid to understanding, lines of force are of course a useful form of graphical representation, e.g. of 

fundamental modes. Even so, for computer modeling of fields the generation of lines of force is far 

from trivial. It is usually easier to generate a vector plot, however, which simply indicates the strength 

and direction of the field over a grid of points. Visually, the results are similar. Given this and a 

variety of other ways of representing fields, e.g. by introducing colors and contours, it is doubtful that 

there is a continuing need for lines of force as a rigorous and quantitative, rather than a qualitative, 

concept. 

Flux is a concept similar to lines of force, but it tends to be introduced at a more advanced stage. 

Using the visual analogy of a density of lines, the number of lines that pass through a given area is the 

flux that it encloses. As the word suggests, flux depicts a flow which, integrated over an area gives the 

total flow through it. And so the lines used to visualize a flux density are different from lines of force, 

rather they are lines of flow.  Making an analogy with fluid dynamics, lines of force would correspond 

to the pressure causing the flow, while the flux density would correspond to the rate of flow. 
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Historically, the fields D and B have been associated with the electric and magnetic flux densities 

respectively. The concept of D as a flux is at least consistent Maxwell’s fourth equation where its time 

derivative appears along with J, the current density, which represents a real flow. The integral of the 

flux over a closed surface yields the free charge enclosed within in the case of ∫ D⋅⋅⋅⋅dA, whereas ∫ B⋅⋅⋅⋅dA 

must be zero. While reference to D as a flux density is now little used, despite the official SI term 

electric flux density, for B flux density is still very much part of the present day terminology.  Flux in 

the electromagnetic context is generally taken to mean magnetic flux unless stated otherwise, and both 

the term itself and the concept endure as a result of Farday’s law of induction. But there is no real 

flow, as there is with, say, J the current density. Maxwell felt that B was associated with a kind of 

momentum [23, p. 230; 3, vol. 2, pp. 197-198 and pp. 271-276], which is consistent with the concept 

of a flow. Moreover, in terms of energy density, which we discussed in Section 6.8 above, force times 

flow is the rate of doing work. Given Equation (38c) in the form dW = E⋅⋅⋅⋅dD + H⋅⋅⋅⋅dB , if E and H are 

force fields then this is consistent with D and B being fluxes. But if H is not truly a force field we now 

have difficulties with H and B in this context. Besides, with B it could be argued that any flow or 

‘momentum’ involved is more really associated with the current giving rise to the magnetic field 

rather than the field itself. For example, in the Einstein de Haas experiment it has been demonstrated 

that angular momentum is transferred from the magnetization to the sample itself when its 

magnetization is reversed [14, p.167].  

Putting aside for a moment the issues concerning whether H can be considered to be a force field and 

turning back to Maxwell’s equations, Equations (25-26), as they would be in a pole description taking 

E and H as the basis fields, then in the third equation a term 
t∂

∂= M
Y  arises along with the time 

derivative of H. We have said that Y may be thought of as a magnetic current density, a flow of bound 

poles, in the same way that 
tbound ∂

∂= P
J is a flow of bound charge. In associating B with a flux, then, 

we are making a similar link between B and Y as holds between D and J. 

In truth, in considering H as a force field and B as a flux, we are simply making an analogy on an 

operational basis rather than on a physical one. The time derivatives of D and B appear in Maxwell’s 

equations together with the curls of H and E respectively. In their integral form, these equations then 

relate the integral of H (or E) around a given loop with the integral of D (or B) over the area enclosed 

within the loop, which is taken to be the flux. With E and D the notion of force field and flux is 

admissible, whereas with H and B it is based on their roles within the equations being similar to those 

of E and D (unless, of course, we are willing to accept poles as a reality). This situation is similar to 

Lagrangian mechanics where generalized coordinates, velocities and forces are employed. Within the 

Lagrangian formulation these quantities have an analogous role to their physical counterparts, but in 

general the analogy is mathematical rather than physical. 

The SI term magnetic flux density and its unit Wb/m2 emphasize the notion of a flux. Tesla is the 

preferred form for Wb/m2 and does not, of itself at least, imply a flux. Many of us may find it helpful 
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to remember the dimensions of B through electric field / velocity = [Vm-1]/[ms-1] = Vsm-2 rather than 

by flux/area as this altogether avoids the issue of flux by relating directly to the Lorentz force.  

6.12 The Local Field 

So far in this article we have deliberately treated all media in the classical view, as continuums devoid 

of any structure on a molecular scale. Having assumed the simplest of frameworks, the conclusions 

that were reached must be independent of specific microscopic detail and are therefore quite general as 

a phenomenological treatment. But in order to make the step from the dielectric or magnetic 

susceptibility of individual molecules to the macroscopic ‘continuum’ picture, however, a 

complication arises, as discussed in Section 2.12 above. The field at an individual molecule is not 

equal to the background field that pervades the medium treated as a continuum, for we must discount 

the molecule itself in order to establish this. For dielectric materials, this is the basis of the Lorentz-

Lorenz treatment [14, pp. 89-95; 15, pp. 100-104; 16, pp. 150-158; 49, pp. 137-139; 22, pp. 116-119] 

in which the molecule under consideration is envisaged to be in a small cavity, generally spherical, 

within the medium. If we consider only the dielectric case, as the magnetic case would seem to be 

mathematically quite analogous, the field Eloc seen by the single molecule is equivalent to the sum of 

four components. Following Kittel [14, pp 89-95] these are:  

••••  E0, the external field applied to the body (as derived from some distant free charge distribution) 

••••  E1, the depolarization field, due to the bound charge induced on the outside surface of the body. 

This is a function of the shape of the body. 

••••  E2, the Lorentz field, due to the induced bound charge seen on the surface of the internal cavity 

••••  E3, the field due to the surrounding molecules that were bounded by the cavity, before they were 

taken away 

Note that all these four fields are generally of different magnitudes so that the local field is different 

from both the applied field and the prevailing field on the interior of the body. While at first there 

would seem to be some arbitrariness about the chosen size and shape of the selected cavity, for media 

that are effectively isotropic a sphere is appropriate. Finally, if the molecules within the cavity have at 

least cubic symmetry, their contribution sums to zero. The method due to Ewald and Oseen [15, 

pp. 84-87 and pp. 100-104] provides a rigorous derivation of the local field, while in a crystalline 

structure the local field may be calculated directly from a lattice sum of the dipole fields [14, pp. 

122-123 and 350-351] over all the molecules in the body except for the one in question, so that the 

ploy of using a cavity introduced by Lorentz not actually essential to the result.  

The key point, however, is that the selected molecule within either the lattice or cavity is now being 

treated as if it were in free space rather than the medium itself, as all the contributions to its local field 

have been resolved in terms of fields due all charge distributions, ρfree and ρbound . In other words, we 

are now back in the microscopic picture.  

This situation, where we resolve the local field in vacuo, must not be confused with the macroscopic 

fields within dielectric and magnetic media that have been defined so that we can deal with them 
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without explicit reference to magnetic currents or bound charges, but in terms of dielectric constant 

and magnetic permeability. The macroscopic fields are given by the sum of the applied field and 

depolarization field alone, i.e. in the electric case E = E0+E1.  

For the local field in the magnetic case we may run through the same analysis as above but with H = 

H0+H1+H2+H3 replacing the corresponding terms in E for the contributions to the field. In employing 

H rather than B in this process we are simply following the mathematical analogy between E and H 

for the sake of expediency, and this does not represent a momentary lapse in philosophy. Surprisingly, 

while there are references to the local electric field throughout the literature, the local magnetic field is 

rarely mentioned in a similar context. In fact, as discussed in Section 2.1 above, when the torque on a 

magnetic dipole is quoted in the literature, a more significant issue is whether the field involved is 

either B or H! Surely this lack of clarity compared with the literature on molecular and macroscopic 

dielectric polarizabilities would throw up some erroneous results? Let us therefore enquire further. 

Almost all problems in magnetic materials which involve the molecular scale, e.g. NMR and ESR, 

deal with either very weak or very strong magnetism. In the case of diamagnetic and paramagnetic 

materials, the magnitude of the magnetic susceptibility is of the order of 10-3 or less, so that the local 

field generally represents a fairly trivial correction to the macroscopic field. On the other hand, in 

ferromagnetic and ferrimagnetic materials where 1<<µ, individual magnetic moments interact strongly 

with their neighbors and tend to behave as a highly correlated ensemble. Any applied field can 

therefore be considered as acting on m , the average magnetic moment of the ensemble as a whole, 

rather than on each mi separately. Kittel [68, 69] and Collin [70], who do pause to remark on the local 

field, argue that the Lorentz field correction, being proportional to M , will produce no net torque 

onm , since any term of the form Mm ×  simply vanishes given that m  is clearly proportional to M .  

Unlike typical dielectric cases where the Lorentz field and the depolarization field are of similar 

magnitudes, in highly magnetic materials the depolarization field alone is therefore the most 

significant factor in relating the applied field to the effective internal field. 

Particularly frequent throughout the literature on spin resonance and its applications, the use of 

µ0m×H or m×H rather than m×B for the torque on a magnetic dipole may be unhelpful or misleading. 

Such casual usage, however,  generally succeeds in achieving the required result  because it turns out  

that it does not matter whether we use B or H, since these are different only by the term µ0M  which, as 

in the case of the Lorentz field, can produce no net contribution to the torque, Bm × , as discussed 

further in Appendix 2.1 below 

Before leaving this issue, however, to demonstrate that we are not just dealing with a point of 

semantics, consider what happens when we substitute µH for B in the torque m×B. We get µm×H for 

the torque, contrary to the value µ0m×H that we have just reasoned. The problem is, of course, that H 

and B are not always parallel even in an isotropic medium. If they were, then H and M  would also be 

parallel, resulting in no net torque at all on the magnetic moment. In spin resonance, the applied RF 

field is orthogonal to the static magnetization, while the magnetic moment takes on a time dependent 

variation that is orthogonal to the applied static field and resulting magnetization. Both of these 
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pairings, being orthogonal, do contribute to the torque that drives the interaction between field and 

magnetic moment. 

6.13  Cavity Definitions of B and H 

Lord Kelvin proposed definitions of the macroscopic fields based on the fields that would exist in a 

small ellipsoidal cavity excised from the medium [49, pp. 137-139; 9, pp. 213-214]. This is shown in 

Figure 12 for the case of the magnetic field. In one case the ellipsoid is taken as a flat disk, the minor 

axis being parallel to the field, and in the other case a long needle shape, with the major axis parallel to 

the field. In the case of the needle-like cavity, E and H within the cavity are the same as within the 

medium, while in the case of the disc-like cavity, D and B are the same in the cavity as in the medium. 

In trying to identify the force that would act on a moving charge within a continuous medium, we 

cannot make use of any such cavity, since with µ = µ0, F = qv×Bcav and F = qv×µHcav are equally 

valid therein. By choosing the shape of the cavity we are only making Bcav (or equally well µ0Hcav) 

equal to B0, Bint, µ0H int, or indeed anything in between.  

In truth, these ‘definitions’ are restatements of the well known field boundary conditions summarized 

in Equations (9) above. While these notions distinguish between the fields, they no more define them 

than do the boundary conditions. It gives us no guidance as to the meaning of the fields or to their 

roles in respect of electromagnetic force. The problem, therefore, is the notion that these ‘definitions’ 

might be of some help in sorting out the fields, whereas in reality, they are not definitions at all. 

 

Figure 12 : Cavity ‘definitions’ of  the magnetic field within a magnetic sphere placed in a 

uniform background field B0, in vacuo. In (a) we have lines depicting B which are continuous. 

An ellipsoidal cavity within the sphere contains a field, Bcav, which strongly depends on its shape. 

For a spherical cavity, the field will equal the background field B0, while for a thin disc as shown 

it will be the same as Bint within the magnetic material. In (b) the lines now depict H. Outside the 

sphere, H is indistinguishable from B/µ, but within H int is much reduced in magnitude. The field 

lines of H cannot be continuous across the surface of the sphere when the density of lines 

represents its magnitude. For the needle-like cavity shown, Hcav equals Hint , but this varies with 

cavity shape exactly as for Bcav , given that Bcav = µ0Hcav . 

(b) (a) 
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7  Conclusions 

Maxwell’s equations have been the basis for the description and analysis of all electromagnetic 

phenomena to date. Provided they are treated on a modern footing, they afford a description that is 

fundamentally correct despite their phenomenological and macroscopic origins. They do not of 

themselves, however, rule out the existence of magnetic poles, rather they provide a basis for 

magnetism that does not require them. Poles may be included, but they are ruled out on the basis that 

they do not give a correct description for the magnetic force and that special relativity together with 

Coulomb’s law fully accounts for magnetism without them.  

Much of the confusion that arises between the old pole based and modern current based theories of 

magnetism lies in the fact that pole theory mimics the true theory so well, while its apparently greater 

simplicity is both intriguing and appealing. There are many situations in which relationships that are 

formally correct within the new theory are at first sight more consistent with the old, e.g. for the B-H 

loop we have B = B(H) and for the energy density differential we have dE   = H⋅dB. Perhaps this has 

helped the old picture to linger on, but equally there has not been sufficient effort to abolish or at least 

update old definitions and terminology, and instances of the casual use of H and B out of their proper 

contexts are plentiful. Although the SI system as represented in IEC 60050 provides an effective basis 

for the modern view, there is still room for objection to some of the names, but more problematically 

in some important definitions there is a lack of harmony between it and the derivative standards IEEE 

Std270 and ISO 31-5.  

This paper has scratched the surface of the historical development of the subject, and then only to the 

extent that has been necessary to explain where we now stand with regard to some outmoded 

conventions and ideas that have lingered on. While these may have a historical place, they no longer 

fit in with the logical development of the subject. It would seem to be very worthwhile if someone 

were to take up the challenge of producing a concise, definitive and up-to date chronology of the 

historical development, pinning down all the cornerstones in terms of the key observations and 

theoretical formulation along the way - that is to say, not just the way things are now, but the how and 

the why. If it were widely accessible it would do much to assist the teaching of the subject, and no 

doubt all of the information is available, it simply needs to be gathered, distilled and reassembled.  

To the same end, those of us who study the subject, or who produce works based on it, should consider 

avoiding those traditional approaches that are no longer in its best interests. In fact, simple avoidance 

may not be enough, pointing out the pitfalls may be equally appropriate. Perhaps it will be also be 

necessary to find novel ways of introducing students to the fundamentals in order to avoid making 

things too complex or mathematically demanding, but nevertheless it would be of benefit if all those 

who have found this paper to have been of interest should try to set an example by adhering only to the 

modern concepts and letting the old ones pass into history. 

The current age of advanced computer technology and sophisticated problem-solving packages for 

electromagnetics bestows mixed blessings. On the one hand it may well bring the risk that the 

software will be used blindly without real understanding of the fundamentals, but on the other hand it 
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does bring more freedom from the difficult and often highly complex technical aspects of solving 

electromagnetic problems. This should allow more time in which to study and understand the very 

basics of the subject, which, as we have seen here, has several aspects that can appear to be cryptic and 

can often be perplexing. Even if special relativity is beyond the reach of students in the early stages or 

within certain disciplines, introducing a modified Coulomb’s law in the form 

( )1 2
12 1 22 2

0

1
ˆ ˆ

4

q q

r cπε
 = + × × 
 

F r v v r  appropriate to moving charges is only a little more difficult than 

the usual static form where the possibility of the charges actually being in motion is overlooked. 

Students would then be given the idea that magnetism is something related to Coulomb’s law rather 

than something altogether apart from it. Ampere’s force law, of course, follows directly and not as a 

separate entity, and the electromagnetic fields E and B drop out as a consequence, as does the Lorentz 

force. Having thus defined E and B, there can be no doubt or ambiguity as to the fields responsible for 

electromagnetic force, and in particular that H, like D, is involved in only an auxiliary role. 

It is to be hoped that we have been able to satisfy the reader with reasoned answers and comment on 

the numerous and often troublesome issues raised in our introduction. A sounder footing on the basics 

of the subject will help to promote understanding, while some encouragement with regard to 

terminology and usage will help to promote good communication and to minimize confusion. It is 

further to be hoped that the problem issues that we have discussed will begin to disappear sooner 

rather than later. 
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9  Appendix 1: 

The Essential Electromagnetic Equations 

As far as essential equations are concerned, it is always possible to put together a variety of equivalent 

forms. The equations summarized below in Table 5 provide at least a basis. They are numbered as in 

the main text and have been selected based on - 

•  Maxwell’s Equations, in microscopic and macroscopic form. 

•  Definition of all the required microscopic source terms. 
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•  Definition of D and H as convenient auxiliary fields. 

•  Constitutive relations and definition of εεεε and µµµµ where linear relationships apply. 

•  The Lorentz force. 

•  Definition of an infinitesimal magnetic dipole moment in terms of a circulating current. 

•  Coulomb’s law, as extended to moving point charges. 

•  Symbols are have their conventional meanings as referred to in this article. Other well-known forms 

of many equations may be reconstituted, e.g. Coulomb’s law, Ampere’s laws, Biot and Savart’s law. 

Table 5. The essential Electromagnetic equations (see Section 9). 
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     In free space we have: 

     ρtotal = ρfree 
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Standard Form of Maxwell’s Equations 

(Macroscopic) 
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F = q(E + v×B) Lorentz Force  (3)  
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Magnetic Moment of Infinitesimal Current 

Loop 
(16)  

( )






 ××+= 21212212
21

21
12 ˆ1ˆ

4
rvvrF

cr

qq

oπε
 

Modified Coulomb’s Law  (13)  

 

60 



© IEEE 2008,  Antennas and Propagation Magazine, Volume 50, No 1, February 2008   

10  Appendix 2:  

Examples 

10.1  Magnetic Spin Resonance 

Magnetic spin resonance in ferrites conforms to a semi-classical description [14, pp. 152-155]. It is 

commonly employed as the basis of non-reciprocal microwave devices such as isolators and 

circulators [71].  

Depending on the preference of the author of those papers and textbooks which discuss the effect 

[14, p. 155 and pp. 167-171; 72; 71, p.10; 39, pp. 456-460], the torque on a magnetic dipole m is taken 

variously as either  

BmΓ ×=   (40a) 

or  

HmΓ ×=   (40b) 

Note that when we see the form involving H, this generally implies that emu or Gaussian Units are 

being employed, for in SI units it would even be dimensionally incorrect without the constant µ0 . 

Often the use of Equation (40) is simply implied in the ‘equations of motion’ for the magnetization 

BM
M ×= γ
dt

d

 (41a)
   

or  

HM
M ×= γ
dt

d
,  (41b) 

where γ is the gyromagnetic ratio. If we assert that at least one of these equations is incorrect, then 

should there not have been some wrong results? Fortunately this is not the case for we can go between 

the equations as follows: 
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           (42) 

That is to say, while the torque on individual dipoles depends on B rather than H, as an ensemble the 

average torqueΓ , can be equally said to depend on H since the average dipole moment, m , is parallel 

to M  with the result that the term Mm ×  vanishes. Consequently, it does not matter whether either B 

or H (in SI, µ0H) is used in Equations (40) as a starting point for the elementary theory of spin 

resonance, the result is the same. What we can say, however, is that substituting µH for B would be an 

easy mistake to make as it would give a completely erroneous answer by a factor of µ/µ0! The reason 
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for this is that if B and H were completely parallel, then the effect would vanish altogether since M  

and H would also be parallel so yielding a vanishing cross product in Equations (42). This example 

very clear illustrates why the terms B, H and µH should not be used casually for convenience, they 

must be treated knowledgeably. 

Taking ΓΓΓΓ = [µο]m×H for of the force on a magnetic dipole is incorrect in principle, since if it is ever 

correct this is only within a restricted context, as in the example above. In much of the work in ESR, 

where the Gaussian system is commonplace, H0 is regularly used to refer to the applied field, and 

often simply referred to as H. The approach of Kittel, who carried out much of the early work on ESR 

in ferrites, is fairly typical [69; 14, p. 155 and 167-171]. One of his well known results, applicable to a 

sample with a plane surface, is that the resonance frequency is given by ω0 = γ(BH)½. This result, 

however, is only a special case of a general formula that includes the dependency of the internal field 

on the shape of the sample. It should not be interpreted as implying yet another possible form of 

Equations (40). 

10.2  The Hall Effect in a Magnetic Conductor 

The Hall effect in a magnetic conductor would be expected to depend primarily on B rather than H. 

Historically, however, the Hall coefficient is defined in terms of E/JH, where E is the induced electric 

field relative to a current density J in the transverse field H [14, pp. 241-242]. Again, the old legacy is 

evident in that H appears in the literature rather than B. Most of the available data on the Hall Effect 

applies to non-magnetic metals and semiconductors where the difference between B and µ0H is 

insignificant. Within magnetic conductors, however, the so-called spontaneous or extraordinary Hall 

effect cannot be treated semi-classically [73, 74]. In such conductors there are two distinct Hall 

coefficients and the Hall field is described by 

MRHRE oH 1+=  (43) 

In principle, the right hand side of this equation should correspond to the magnitude of the magnetic 

part of the Lorentz force. Indeed, the term R0H does correspond to the Lorentz force and is 

consequently termed the ordinary Hall effect, which predominates above Tc, the Curie temperature, 

above which the possibility of permanent magnetization ceases. On the other hand, R1M corresponds 

to the so-called extraordinary effect that predominates below Tc.  

Now here the appearance of H rather than B in Equation (43) is rather troublesome. One is left to 

question whether the use of H refers to the applied external field, or whether it should mean the field 

within the sample. Moreover, one could ask whether the term in M accounts for this, so that it really 

means 

MRRBR

MRMRMHRE

oo

ooH

)(

)(

1

1

−+=
+−+=

 (44) 

In nonmagnetic materials this is of almost no consequence and the habit has been to use H. One 

reference [75], however, does quote the equation for the Hall field in the unambiguous form  



© IEEE 2008,  Antennas and Propagation Magazine, Volume 50, No 1, February 2008   

MRBRE oH 1+=   (45) 

stating B to be “the magnetic induction in the material”, which puts it beyond all doubt. Now, it turns 

out that the extraordinary term, which depends on M alone, normally tends to be dominant and does 

not actually arise from the Lorentz force but from scattering due to spin-orbit coupling. Nevertheless, 

R0 has been measured in Iron, Cobalt and Nickel, but even here the results do not help, as its sign is 

positive for iron while it is negative for the other two. In short, the effect is sufficiently complex in 

magnetic materials that it cannot be taken as clear-cut evidence for the true nature of the Lorentz force 

without additional detailed information about the behavior of the conducting charges. This aside, it is 

another situation where we often encounter references to H rather than B in the literature without due 

explanation. 

10.3 The Force on a Current-carrying Magnetic Condu ctor 

The force on a current-carrying magnetic conductor in the presence of a uniform magnetic field is 

analyzed by Stratton [9, pp. 258-262] who assumes a cylindrical wire of permeability µ1 carrying a 

current I with the wire running parallel to z and embedded in a medium of permeability µ2 within 

which the applied field B0 is uniform and directed along x. After a complicated analysis, Stratton’s 

result is simply 

IB

IHF

o

oy

=

= 2µ
 (46) 

Taken at face value, this means that the force on the wire is dependent on the external field B0 alone 

and not, as we might initially expect, on the field Bint experienced by the current carriers within the 

wire. But the reason for this is simply that any demagnetization field within the wire only causes 

forces between the free current carried by the wire and the induced distribution of magnetization 

current running around the surface of the wire. These forces are purely internal and so contribute 

nothing to the force between the wire itself and the external field. If, however, the medium supporting 

the wire were a magnetic fluid, then Stratton’s result implies that the correct value of the force will be 

by B0I rather than µοH0I.  Since the ratio of these terms is µ2/µο, a greater force is measured in a 

magnetic medium and the so correct form of the Lorentz force can be confirmed experimentally. 
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