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Abstract
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historical accidents and trends. This article examines: what they were in the
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40 years; the significant variations there have been since then; who have
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THE EVOLUTION OF MAXWELL’S EQUATIONS FROM 1862 TO THE PRESENT DAY

1 INTRODUCTION

In this article, each equation numbered from (1) to (24) represents a different version of
Maxwell’s equations! While these equations are familiar to almost every graduate in physics
or electrical engineering as
V-D :pfree
V-B=0
VxE=-0,B
VxH=J"™+0,D

1)

they were not always so clear and concise. In these four partial differential equations, the
vector quantities D, B, E and H represent the four electromagnetic fields, namely

D, is the electric displacement
B, is the magnetic induction
E, is the electric field intensity, and
H, is the magnetic field intensity.
On the other hand, the sources that generate these fields are the scalar free charge density

p ™ and the vector free current density J ™. This form and its many variants (apart from

trivial changes such as the use of 0, , an overdot for d/ét, or even Maxwell’s original d/dt)

actually owe their existence to several key contributors who tidied up the original equations
and polished the underlying physics, and who improved the mathematical tools and
notational niceties. Although they are now universally referred to as Maxwell’s equations,
they do not actually cover all of the equations that Maxwell deemed necessary for the study
of electricity and magnetism. As a minimum, the basic constitutive relations

D=¢,E+P _
1la (11)
H= yia B-M
and a force equation,
F=q(E+vxB) (1ii)

are also required (since these equations may be grouped with Equations (1), we give them the
same number with the suffices i, ii ...). The constitutive relations bring in the fundamental
constants ¢,and gy, that directly relate D to E and H to B in free space while P and M

are source densities, respectively the electric and magnetic dipole densities within a material
body (and clearly vanish in free space). The force equation, known as the Lorentz force, tells
us the electromagnetic force that acts on a point charge q travelling through an
electromagnetic field with velocity v. Only E and B are involved in this force whereas D
and H take no direct part.
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Our aim in the present article is to sketch out how we got from Maxwell’s original equations
to the ubiquitous version in Equations (1) by reviewing the roles of the key contributors to its
mathematical and physical development. We also go beyond Equations (1), which have now
been extant for over 100 years, to address more recent approaches that have found favor in
certain areas and which shed further light on the fundamental principles of electrodynamics.
For the benefit of the general reader we briefly explain the mathematical formalisms involved
in these approaches, but no appreciation of special relativity will be required.

In tracing the story, we attempt to give a realistic idea of how Maxwell’s equations appeared
at each stage. Despite the historical context, we transfer everything to modern symbols and
conventions, including the international system (SI) with which the majority of people are
now familiar. While mixing different sets of symbols would have created some confusion, as
is well known, switching between one system and another causes various constant factors to
appear or disappear at various places (see, for example, [1, Appendix, Table 2]) leading to a
potential source of even greater confusion. We can manage better by simply allowing any
differences of this sort between Sl and the original units to pass unchallenged. In any case,
Maxwell did not adhere to any single system that could be found in the table just referred to,
and as to symbols, an example will suffice, Initially, Maxwell did not use the symbol E for
the electric field, nor did he use subscripts. Instead, as shown in Figures 1-3, he used P, Q
and R for the components of E (later, in a similar vein, Hertz used X, Y and Z). This led to
vector equations having to be written ‘longhand’, i.e. three times, one for each component.

We therefore keep to E,,E and E,, etc., as this will be consistent and clear to all. In

addition, the original texts often refer to current and charge when it is actually their densities
that are implied (in fact, 0,D is still referred to as the displacement ‘current”) and the terms

‘electric force’ and ‘magnetic force’ may be used in reference to D and H respectively, rather
than to E and B (which are the only two fields that appear in the Lorentz force). Particular
care is needed in these situations to determine whether it is the terminology or the equation
that is at fault [2].

Finally, although we can never be absolutely certain exactly who did what first and where the
initial ideas originally came from, it is fairly certain that Heaviside and Lorentz both made
significant contributions to the clarification and formation of the equations, while Hamilton,
Heaviside (again), and Gibbs clearly contributed to their mathematical expression. It is also
clear that Oersted, Ampére, Biot, Savart and Faraday were Maxwell’s antecedents in the
development of electromagnetic theory, while Boltzmann, Hertz, Kirchhoff, Lorenz and
Weber all made roughly contemporaneous contributions to it. However, it is not our purpose
here to reflect on the degree to which any particular contributor may have directly or
indirectly influenced the formulation of his equations. In a brief sketch of the subject it is not
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always possible to acknowledge every contribution and, in the end, we have simply attempted
to be as clear and as accurate as space and time permits.
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Figure 1: Maxwell’s Equations as they First Appeared in 1861-2
This was Maxwell’s first published attempt at a complete set of electrodynamical

equations, including displacement current. Apart from the term E? that originates in
the unnumbered equation, he used exactly the same symbols in the Dynamical
Theory, and comparison with Figure 2 shows that, inconsistencies in minus signs
excepted, the equations were more or less equivalent. Note that the unnumbered

equation above expresses only the x components of the vector equation E=¢"'D
(ignoring the minus sign). While the problem with these original equations was the
connexion with the molecular vortex model, they did lead Maxwell to the same
conclusions: the existence of electromagnetic waves, and the strong likelihood that
light was an electromagnetic wave. Elements of this figure were taken from
Maxwell's original article as it appears in digitized form on

http://upload.wikimedia.org/wikipedia/commons/b/b8/On Physical Lines of Force.pdf
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Figure 2: Maxwell’s Twenty Symbols and List of Equations

from the Dynamical Theory
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Maxwell’s equations, and the summary of the symbols he used, as they appear on
page 486 of the Dynamical Theory. Note that in partial derivatives he wrote d instead
of 0 and the character resembling por ¢ in Equation (F) denotes resistivity. The

red mark-up indicates the vector and scalar symbols that we use today. Maxwell

called the vector potential ‘electromagnetic momentum’ because €0, A represents a

force acting on e units of negative charge, and this bears a similarity to the familiar

mechanical force md,p, where p is mechanical momentum and m is mass. Could it

have been this analogy that prompted the problem with the signs of e in equations (F)
and (C)? (Based on the digitized copy of the original article, available on the Royal
Society of London’s website [4]).
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Figure 3: Maxwell’s Twenty Equations from the Dynamical Theory
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Maxwell’s twenty equations as they appear over pages 480-485 of the Dynamical
Theory. Comparison with the earlier equations of 1861-62 shows that a number of

terms have different signs. There were twenty equations because he wrote one

equation for each vector component and covered a wide range of electric and
magnetic phenomena in an attempt to give them a common foundation. What we

now consider to be the key electromagnetic equations are therefore a subset of these.
(Based on the digitized copy of the original article, available on the Royal Society of

London’s website [4]).

MAXWELL TO LORENTZ

2.1 James Clerk Maxwell

Arguably, the earliest evidence of Maxwell’s equations are those, shown in Figure 1, given
by James Clerk Maxwell in a four-part article that he published over the course of March
1861 to February 1862 [3]. Here, using the concept of “molecular vortices”, he sought a
mechanical analogy for the behavior of electromagnetic media, mainly as an aid to
understanding how they mediate the two kinds of electromagnetic force. The resulting
equations included the novel proposal of a displacement current, leading him to the key
conclusion that, not only would media conforming to this model support transverse

electromagnetic waves, but that light could well be such a wave.
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In December 1864, however, he presented a further paper to the Royal Society of London. In
this new article, which we will refer to as the Dynamical Theory [4], the essence of these
equations was retained but the mechanical analogy was abandoned and replaced by the more
abstract notion, originally due to Faraday, of an electromagnetic field” that pervades all space
and physical media alike. In so doing, Maxwell avoided the conceptual difficulties of the
alternative action-at-a-distance theory of Weber [5, p. 67] and gave, for the first time, a
credible mathematical basis for the universal laws governing electromagnetic phenomena,
Figures 2 and 3. He had now established the foundational form of Equations (1)—(1)ii above'.

It should be noted, however, that Maxwell brought in not only the electric and magnetic
fields into his equations, but also the scalar and vector and potentials. Although his own

major innovation was the inclusion of the displacement current 0,D in Ampére’s law, he did

not have an exact counterpart for the constitutive equation D = g,E+ P ; rather, he offered the

linear law D =¢E that was held to characterize dielectrics in the same way that J=0cE
characterizes conductors. Similarly, he used B=uH. Although he discussed electric

polarization in dielectrics, he did so in terms that were conceptual rather than definitive and
so he did not actually distinguish it from what he called electric displacement. The
distinction, of course, is clear enough now; polarization exists only in physical media
whereas displacement can exist in free space. Nevertheless, the absence of fine detail may
have actually helped Maxwell reach his idea of a displacement current, for he seems to have
been thinking along the lines that the ether would behave like a real medium, in which case
his concept of displacement would apply equally well to both. At that time, fortunately, there
were few theoretical obstacles to dissuade him of his notion.

By 1873 Maxwell had consolidated his foundational work on electromagnetics by publishing
a two volume work that we will refer to as the Treatise [6]. The main advance in his
equations from the Dynamical Theory to the Treatise was notational rather than physical; in
the former he started out with the aforementioned ‘longhand’ form of vector equations with
no reference to vectors per se. The mathematical concept of vectors [7, Ch. 1] and their
representation in terms of indexed components was not in general use at the time. In Sl and
present day notation, the initial forms of his key equations corresponding to Equations (1)
may be rendered as

" «...the Electromagnetic Field...that part of space which contains and surrounds bodies in electric
and magnetic conditions.” [4, p.460].

" Notwithstanding this, the force equation was eventually named separately after H. A. Lorentz.
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G)... p™+0,D,+0,D,+9,D,=0

Bj =0,A -0, A

) 1 equation)
)

)--. E;=Vv,B—vB -0,A-0,¢

)

)

j.k,I cyclic = 3 equations)

( (
( (
( (J,k,1I cyclic= 3 equations) (2)
( J, =3 +0,D, (I=x,y,z = 3 equations)
(

C)... 9,H -9 H;=J, (J.k,1 cyclic = 3 equations)

Beside each of these equations is the lettered label that Maxwell’s gave them but, for ease of
comparison, they have been put in the same order as we find them in Equations (1), with (A)
and (C) being grouped as one. Figure 2, shows Maxwell’s symbols and how he enumerated
and described his equations, while Figure 3 shows how all 20 of his equations actually
appeared. Note that there was an inconsistency in his treatment of charge, so that the sign of

free

p inequation (G) is wrong. It was in the two homogeneous equations, (B) and (D), that he

employed the vector and scalar potentials A and ¢. Although this may seems a bit odd today,
as Heaviside was to show, his equation (B) is the same as B =V x A, which of course leads

to V-B=0, and similarly (D) leads to VxE=-0,B provided that all the v; are set to zero.

Equations (2) are therefore just a different way of expressing Equations (1). However, since

the v; are the components of a velocity, their presence in the original equation also embodies

an equivalent of the Lorentz force through a velocity dependent modification of the electric
field itself — an idea that is closer indeed to tenets of modern relativity. That aside, he also
gave separate equations (L) and (J) that, when taken together in the form F=qE+IdIxB,

are also equivalent to the Lorentz force, with Idl being the same infinitesimal current element
that we find in the Biot and Savart force law.

Although Maxwell generally adhered to the use of ‘longhand’ equations in his treatise, he
did make a radical step forward by also introducing W.R. Hamilton’s quaternions [7, 8],
perhaps as a result of the influence of his close friend P. G. Tait, who had published a treatise
on them in 1867 [9]. Since that was just after the Dynamical Theory, it gave Maxwell plenty
of time to take the new ideas on board and take a step forward in a mathematical direction.

Quaternions have four components, one of which is a scalar and the other three of which are
components of a vector; they also embody the needs of complex arithmetic, dot and cross
products, and provide a familiar form of notation for the 3D basis vectors: i, j, k. For
example, they now made possible the representation of the electric field as the single entity

E, meaning E,i+E j+Ek, and the creation of vector derivative V=0,i+0,j+9,K. An

expression such as V-E would then be written as —S.VE, in which the role of the operator

" The equation label “(D)” on p. 491 of Maxwell’s original text is presumably a misprint for “(L)”,
which would logically be the next label in sequence.
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S. is to pick out the scalar part of the argument, whereas V. picks out the vector part, giving
us VxE=V.VE. The meaning of VE is that 0,i+0 j+0,k and Ei+E j+EK are to be
multiplied directly term by term, observing left to right order and using Hamilton’s basic
rule”, i’ = j° =k® =ijk = 1. It is readily verified that VE has the requisite form of a scalar

plus a vector, and leads to VE=S.VE+V.VE=-V-E+V xE. Keeping the labeling of his
original equations for ease of comparison, the equations that we are chiefly interested kept
the same meaning but emerged in a new form [6, Arts. 609-19]

(G)...  p™=-SVD ~ p™=V.D

(B)... B=V.VA B=VxA

(D)... E=V.VB-A-Vg E=vxB-9,A-V¢ )
(A)... J:J"eub} J:J”‘*uato}

€)...  V.VH=J . VxH=1J

They are shown as quaternions on the left, whereas on the right they are shown in the usual
notation. Although Maxwell chose German letters as symbols for the vectors, as shown in
Figure 4, most of them stay with us, albeit in more familiar Roman form, namely A, B, D, E,
and H. In addition to these, Maxwell also introduced the magnetic constitutive equation now

written as B=z,(H+M), but it is curious that this did not draw him towards a similar

electrical version as he still adhered to D=c¢E. As already explained above, equation (D)
leads directly to the Lorentz force on a unit point charge. However, Maxwell made a mistake
in converting it to a force acting on current and charge densities [6, Art. 618]. In addition to
the original error pointed out by Fitzgerald and referred to in Thomson’s footnote, it is now
also clear that the force acting on a current density should not include the entire displacement

current, which is at(goE+ P), since only the polarization current 0,P represents an actual
current density’. On the other hand, he did fix the sign error in equation (G)!

We find that while little else had changed in any physical sense from the equations in his
Dynamical Theory, and despite Equations (B) and (D) still not being directly comparable
with their present-day forms, it is much easier to see the connexion between these quaternion
equations and their vector counterparts. Eventually, however, the quaternion formalism lost

" He is said to have inscribed this equation on a bridge over the river Liffe in Dublin. There were to
be no scruples about ‘adding apples and pears’, or rather scalars and vectors, a practice later banned
by the vector analysts.

" This error arose in the Dynamical Theory because Maxwell’s concept of displacement was based on
the movement of charges, even in the ether. Maxwell made other errors; notably, he misinterpreted
the force acting on a current as acting on the conductor that bears the current [5, Art 501]. This so
rankled with one student of the Treatise, E. B. Hall, that it set him on the path of discovering the Hall
effect [11].
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ground to vector analysis, possibly because the latter was seen by many as being much
simpler in concept and quite adequate for the purposes of most physicists and engineers.

s%‘;’c‘:zlr.“ Constituents.
The radius vector of a point....... g p 2y 2
The electromagnetic momentum at a point 9 ¥FGH
The magnetic induction ......ccocoevninnnnns B a b ¢
The (total) electric current .................. ¢ “ v w
The clectric displacement..................... D f g &
The electromotive force ..................... ] PQR
The mechanical force ........c....ooenuneen. 1] XYz
The velocity of & point............coceenvvneen Gorp z g 2
The magnetic force ..............ccocveruan... H a By
The intensity of magnetization ............ 3 4B¢C
The current of conduction .................. e pgr

Figure 4: Maxwell’s Old German Symbols for the Vectors used in the Treatise.

The Old German letters 2(, B, ®©, & and $ correspond to the roman letters A, B,

D, E and H, all of which are the symbols still in regular use today for key
electromagnetic quantities. The ‘constituents’ are the vector components, as they
were in the Dynamical Theory and [3]. (Reproduced from Art. 618, Vol. 2 of the 1
Edition (1873), of Maxwell’s treatise, digitized by Google Books).

2.2 Oliver Heaviside

Oliver Heaviside, who was largely self-taught, was so eager to get to grips with Maxwell’s
electromagnetic theory that he studied the Treatise avidly until he was well enough versed in
it to forge his own way ahead with the theory. At about the same time that Maxwell was
publishing his treatise, Heaviside was publishing in journals such as the Electrician and the
Telegraphic Journal. This developed into a considerable body of work that he later
republished as Electrical Papers [10] and Electromagnetic Theory [11]. The publication of
one such article [10, Vol. 1, Art. 30, 881-9] commenced in January 1885 and over the course
of nine separate issues (“sections”), Heaviside gave the reader his ‘rough sketch’ of
Maxwell’s theory.

While Heaviside was an enthusiastic proponent of Maxwell’s theory, he was very much less
sympathetic to his use of quaternions. He felt that these were difficult and, as a consequence,
unpopular, even citing Tait’s book as one of the main reasons for this! In his view,
quaternions were a handicap that had prevented Maxwell from doing himself full justice and
as a result he had not achieved the level of acclaim that he undoubtedly deserved [10, Vol. 1.
Art 26, 815]:

“...there is no question as to the difficulty and the practical inconvenience of the

quaternionic system.”
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Heaviside’s main purpose in this serialized article was therefore to give Maxwell’s theory a
clearer exposure by employing a cut-down vector algebra drawn out of the quaternions. Like
many of Heaviside’s mathematical ideas, this was innovative, but he did not throw the baby
out with the bathwater, rather he simply dispensed with the difficulties. He retained vectors
and scalars but did not allow addition between them; the square of a vector was to be positive
rather than negative, and the multiplication of vectors was to be allowed only through scalar
(inner) and vector (cross) products, both of which had simple geometrical meanings. These
ideas were introduced in 1882 [10, Vol. 1, XXIV, 81], developed in 1885 [10, vol. 2, Art.
31], and later published in 1891-92 as Elements of Vectorial Algebra and Analysis [11, Ch.
3]

This first innovation greatly improved the readability of Maxwell’s equations, but as to their
actual content, he did not condense 20 into just four, as some authors have claimed, since
Maxwell had already achieved effectively the same thing in Equations (3); nor did he even
put the four main equations together into a single group as we know them now, but what he
produced did contain four familiar looking equations,

(IX)... divD=p

(V)... divB=0

(IV)... curlE=-0,B @

(m)... curlH=0E+6,D

The Roman numerals used here are not actual equation numbers, rather they indicate the
installment that each equation appeared in, making it quite clear that they emerged separately

over a period of months, along with D= ¢E, J™=0E and the like, each of his equations

more or less matching one from Maxwell’s Treatise. In these, his second major step forward
was to eliminate the potentials in Maxwell’s equations (3) by taking the divergence of
equation (B) and the curl of equation (D), from which he also abstracted the V.vB term to
correspond with measuring E in a fixed frame of reference rather than on a moving conductor
(see the discussion in 82.1). Although these equations were to be repeated frequently
throughout Heaviside’s vast outpouring of work, the only identifiable ‘special set” seems to

be (111) and (1) which, because of their cross-coupling, he called the “duplex equations”.

2.3 J. Willard Gibbs

The American scientist J. Willard Gibbs, who gave his name to the Gibbs’ phenomenon, is
mainly renowned for his work on thermodynamics, a subject in which Maxwell was also
much involved. The two men corresponded, but it was generally on this subject rather than
electromagnetic theory. Gibbs made other significant advances in mathematics, in particular
vector analysis, but all the same he did not contribute directly to the reformulation of
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Maxwell’s equations; he is, however, credited with providing the familiar vector formalism
that we normally use for them today. More or less at the same time that Heaviside was
writing on, and using to advantage, his own synthesis of vector analysis, Gibbs produced a
pamphlet [13] on very similar ideas as an accompaniment to the lectures he gave at Yale
University during 1881-84. A more complete compilation of Gibbs’ lectures was published in
1901 by E. B. Wilson as Vector Analysis [14]. In his preface, Wilson acknowledges the
contribution made by Heaviside:

“By far the greater part of the material... has been taken from the course of lectures on
Vector Analysis delivered...by Professor Gibbs. Some use, however, has been made
of the chapters on Vector Analysis in Mr. Oliver Heaviside’s Electromagnetic Theory
... and in Professor Foppl’s lectures on Maxwell’s Theory of Electricity ...”

While Wilson briefly included the “duplex equations” in his book (in both differential and
integral form) Gibbs’ original pamphlet had been purely mathematical. In fact, it had become
known to Heaviside only in 1888 [10, Vol. 2, Art. 52, §6, footnote to p. 529]. He later said of
Gibbs’ likeminded approach [10, Vol. 1, Art. 26, 817, footnote on pp. 271-272]:

“Professor Willard Gibbs, the author of a valuable work on vector analysis, also
ignores the quaternion, abolishes the minus sign and the double signification of a

vector, following Grassmann rather than Hamilton.”

Independently, it would seem, they had the same idea of a vector analysis founded on the
simplification of quaternion theory by salvaging the vector core from the rest. Actually, there
were strong feelings both for and against quaternions. When P. G. Tait claimed in the preface
of his book [9] that “...Gibbs must be ranked as one of the retarders of Quaternion
progress...”, Heaviside came to Gibbs’ defense with “This may be very true; but Professor
Gibbs is anything but a retarder of progress in vector analysis...” [10, Vol. 2, Art. 52, §6,
footnote to p. 529]. The differences between Gibbs’ and Heaviside’s ideas were minor, for
example, Heaviside wrote out div and curl and used the notation ab and Vabfor the scalar
and vector products respectively, whereas Gibbs introduced the notation we use today, V-,

Vx, a-b and axb. However, in spite of their overall similarity, it is undeniable that Gibbs’

book was a major factor in the dissemination of the language of vector analysis, a language
that has prevailed across a wide body of physics and engineering ever since.

2.4 Heinrich Hertz

In mainland Europe, Maxwell’s equations were often referred to as the Maxwell-Hertz
equations. In his revolutionary 1905 paper on special relativity [15], Albert Einstein not only
refers to them as such, but quotes Hertz’s ‘longhand’ formulation in preference to those of
either Heaviside, Lorentz or Foppl, who had all adopted vector analysis.
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Hertz’s ideas on electromagnetic theory [16] originally stemmed from Helmholtz, who
started out as a follower of Weber rather than Maxwell. In the long run, however,
Helmholtz’s theories were not a great success [17, p. 113] and so Hertz came to embrace
Maxwell’s equations [18, p. 20]:

“I have rather been guided by Helmholtz’s work [but] the physical basis of
Helmbholtz’s theory disappears as soon as action at distance is disregarded. I therefore
endeavored to form for myself... the necessary physical conceptions, starting from
Maxwell’s equations but otherwise simplifying [his] theory as far as possible”

As to his own contribution in this respect versus that of Heaviside, he reveals in his 1890

paper [19]:
“I have been led to endeavor for some time past to sift Maxwell’s formulae and to
separate their essential significance from the particular form in which they first
happened to appear... Mr. Oliver Heaviside has been working in the same direction
ever since 1885...and the simplest form which [his] equations thereby obtain is
essentially the same as that at which | arrive. In this respect, Mr. Heaviside has the
priority.”

Like Heaviside, his aim was to achieve the clarity that was lacking in Maxwell’s exposition.

Unlike Heaviside, however, he made no attempt to modernize their mathematical structure; in

fact, he took as his mathematical basis the same sort of elementary formulation that Maxwell

had first used, for example, X,Y,Z for the components of E and L,M,N for H. After

adjustment to a conventional right-hand co-ordinate system, his general form of the duplex
equations appeared as

6,B,=0,E, -0,E, 6,D,=d,H,—8,H,-1J,
(9a)... {6,B,=0,E,~9,E,  (9b)... {8,D, =8,H,~d,H,-J, (5i)
0,B, =0,E, —0,E, 8,D,=0,H,~8,H, -1,

As did Heaviside, he made them clearer by removing the potentials; he then presented them
in separate forms for free space, isotropic insulators, conductors, etc. with the general version
above [18, p. 211] tacked on at the end. The divergence equations, however, are far from

clear. Hertz’s ‘electric polarization’ (X%,2),3) is actually our D, while his ‘magnetic
polarization’ (2, mt,m) is actually our B. The electric divergence equations [18, pp. 213-4]
are then given as

0, X+0,Y +0,Z =€,
(5it)
0,X+0,9+0,3=¢,

rue
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where (X ,Y,Z) corresponds to E and e is our p. He goes on to give an identical prescription

for magnetic charge so that in both cases not only do the terms true and free appear to be
effectively reversed compared to the present day usage of total and free respectively’, but
also V-B=0 is treated analogously to V-D=0 as being a local rather than a global
condition.

2.5 Ludwig Boltzmann and August Foppl

Boltzmann and Foppl are better known for their contributions to thermodynamics and
structural mechanics respectively, but these are fields in which Maxwell also made
significant contributions. Although Boltzmann did work at an electromagnetic theory of his
own, he later came to be a proponent of Maxwell’s doctrine [20]. The fact that he
corresponded with both Heaviside and Hertz could well have helped the dissemination in
mainland Europe of Maxwell’s theory and of Heaviside’s recent progress in elucidating it.

Foppl took part in the correspondence with Boltzmann and Heaviside, [17, p. 113]. Being
enthusiastic about the Maxwell-Heaviside theory, his main contribution was the publication
of a book in 1894, Introduction to the Maxwellian Theory of Electricity [21]. This work is
significant because, unlike Heaviside’s, it was not a collection of papers, it was a proper
book. The treatment of vector analysis and electromagnetics is well organized and clear;
crucially, being in German, it must have done much to publicize in mainland Europe the
ideas of Maxwell and Heaviside, to both of whom it clearly pays homage [17, p. 113]:

“The works of [Heaviside] have in general influenced my presentation more than

those of any other physicist with the obvious exception of Maxwell himself.”

While its influence even spread as far afield as Wilson and Gibbs (see the quotation in
Section 2.3 above), Foppl’s book and name would surely have been much better known today
had an English translation been readily available.

2.6 Other “Maxwellians”

A handful of scientists who actively promoted Maxwell’s ideas in the closing decades of the
19" Century came to be known as the “Maxwellians” [22, 23] . Heaviside and Hertz were
two, and the others were Oliver Lodge, who made advances in radio technology, and George
Fitzgerald, of the Lorentz—Fitzgerald contraction. Although neither Lodge nor Fitzgerald
contributed to the actual equations, along with the other Maxwellians they played a
significant role in getting them generally accepted. However, Foppl and Boltzmann clearly
also contributed to this, as did W. D. Niven, who published Maxwell’s collected works [24]

“ Some authors do use the term ‘real’, meaning ‘free’, but Hertz also used the term ‘free’ and in an
entirely different context. See Hertz’s own description [18, pp. 214]. Foppl followed Hertz’s
definitions in this respect.
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and edited and completed the second edition of the Treatise (1881), and J. J. Thomson,
discover of cathode rays, who revised it for the third and final edition (1891).

2.7 Hendrik Lorentz

In 1892, Lorentz published an article [25] in which he presented Maxwell’s theory along
lines that closely followed Hertz’s approach. He was also aware of Heaviside’s work
(perhaps through Foppl) and introduced vector notation, using it side by side with the original
Maxwell-Hertzian longhand format, for example, he stated [25, ch. 1, p. 11, §87]

“The current ...will be represented by C, with u, v, w as short-form for C,,C,,C, ...

The magnetic force and its components [will be represented] by H, «, 3,7, and the
magnetic induction and its components by B, a,b,c.”
By the time of his 1902 paper [26], however, Lorentz had more fully taken to vector analysis,
but using a notation that was somewhat different to that of any of the aforementioned
adherents. His goal was to develop the fundamental equations of electromagnetics via his

electron theory, and in so doing he gave us Maxwell’s equations as a fundamental set for
what appears to be the first time

)... divd=p

V)... divh=0

IV)... —c’rotd=¢,h (6)
I)... roth=9,d+ pv

(VI)... f=p(c’d+vxh)

In these equations rot means the same thing as curl (Maxwell originated both rotation and the
more familiar term curl). In addition, Lorentz deliberately uses d and h rather than the
expected D and H because he is referring not to these macroscopic fields, but to the
microscopic fields d = gEand h=B/y,, that is to say, the fields we would encounter within
matter by accounting for every iota of static and moving charge, here represented by p and
pV respectively”. These were to be his underpinning of Maxwell’s essentially macroscopic
equations, in which the usual macroscopic fields are to be seen as arising from the
microscopic ones by a process of spatial averaging. W.ith these, Lorentz also includes
equation (V1), which expresses the force acting on a unit charge, as being fundamental; it is
of course equivalent to the present day form of the Lorentz force, Equation (1)ii, that actually
defines what we mean by E and B.

From this microscopic basis, Lorentz then goes on to recover Equations (1) in the form

" In reality, separate charge densities are required for the static and moving charges.
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I)... divD=p

V)... divB=0 -
IV')... rotE=-0,B

(
(
(
()... rotH =J  where J=6D+J*" +C+R

The only real difference is that the free current density J "™ is expressed as the sum of three

terms: a conduction current J*™ , a convection current” C, and a Rontgen current R. The last
two terms, which are are related to the motions of the body of a medium, or within it, are
now rarely split out in this way. Lorentz also gave us the full constitutive equation for

dielectrics, D=g,E+P, which goes beyond Maxwell’s concept of displacement by

distinguishing the in vacuo displacement &,E from the physical electrical polarization P.

Although he used the term ‘measurable’ rather than ‘free’, he nevertheless remedied Hertz’s
contrary definition of ‘free’ sources.

Strangely, the name Maxwell appears nowhere in this article, and the same is true of a later
one in which Lorentz refers to equations (1)i and (1)ii as “the fundamental equations of the
theory of electrons”, giving only “M. E.” as the source [27, 83]. However, this abbreviation
did not mean ‘Maxwell’s equations’, rather it indicated a previous article of his in
Mathematischen Encyklopadie [28]. Perhaps he now felt that his electron theory had
superseded Maxwell’s original phenomenological theory. Nevertheless, the said article in
“M. E.” frequently refers to Maxwell, and by embracing the vector analysis of Heaviside and
Gibbs, carefully reconstructing the Maxwellian groundwork, tackling the microscopic model
and focusing on the essential equations, all of which he published in detail, Lorentz’s
contribution was highly significant.

3 OTHER FORMS

If the advances made by Heaviside and Lorentz led to Equations (1)—(1)ii in more or less
their present day forms, what changes have taken place since? By and large, this version
continues to be widely used because the vector analysis of Heaviside and Gibbs is still a
cornerstone of the mathematical framework of engineering, physics and applied mathematics.
But in advanced subjects like mathematical physics, there is a need for alternative
frameworks that are capable of dealing with such things as special and general relativity, the
efficient computation of fields, and new concepts in general. As a result, we are likely to
come across many other forms of the equations throughout the literature from the early
1900°’s to the present day. Maxwell himself would have agreed that any mathematical

innovation that would reveal more about the true nature of the laws of electrodynamics, or at

In Lorentz’s use of the term, a convection current was not the same as an eddy current
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least make them clearer and easier to understand, would be worth looking at. Indeed, he
himself had taken that step in embracing quaternions — the rest of the scientific world, on the
other hand, seemed not to be quite ready for them at the time. We now trace the key recent
developments.

3.1 Hermann Minkowski and Albert Einstein

In the early 20™ Century, special relativity was brought to bear on electromagnetic theory
with a startling explanation of the negative results of the Michelson-Morley experiment: there
is no material ether, the speed of light in vacuo is a universal constant, and we live in a four
dimensional world. It was Einstein who made the major breakthrough with the theory of
special relativity, and in particular his revelation that the observed magnetic field of a moving
charge originates from a purely electric phenomenon, the Coulomb field of the charge in its
own rest frame [15]. More generally, he showed that the laws of electrodynamics were
covariant [29, 30], that is to say, Maxwell’s equations apply in any reference frame, in spite
of the observed fields, sources and coordinates all appearing different, for example:

(unprimed frame) VxE=-0B <« V'xE'=-0,B" (primed frame)

It was Minkowski, however, who brought the concept of spacetime to bear on Lorentz’s
rendition of Maxwell’s equations in his 1908 paper [31]. He showed that not only could time

and position be combined as one four-vector [x] charge and current (including intrinsic
magnetic current) could be combined to form another 4-vector, [J] In a similar vein, the

components of E and B may be combined to form a 4-matrix [F] specifically

X d, z,3, 0 B, -cB, -jE,
_| Y. 19y . | Zode . |-¢B, 0 ¢cB -jE, :
bt G P S e P e Gl e, -8, 0 -jg | &
jet ajct jp/é‘o JE, jEy JE, 0

where ¢ is the speed of light, and Z, is the characteristic impedance, in free space. As a

result, Maxwell’s equations in free space could be expressed as two sets of four simultaneous
linear equations

" The subject of Einstein’s priority over Lorentz and Poincaré in this matter is discussed in the given
references.
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o,F, +0R; +0,F, =
0, Fy +0;F; +0,Fy =
0, Fy +0,F; +0,Fy =
0.Fy  +0,F, +05F, =

N

(A)...

w

[ SR SR S &
N

N

®)ii

O,Fy  +0,F, +0,Fy =
a1 I:43 +63 F14 +84 F31 =
81 I:24 +82 I:41 +84 F12 =
a1 Fsz +82 I:13 +83 le =

(B)...

O O O o

For example, 6,F,; +0,F,, +0;F,;; =J, equates to o, JE, +0, JE, +0, JE, = jp/&,, that is to
say, V-E=p/g, . In the case of general media, he obtained a very similar result employing

D, and H, in the four inhomogeneous equations rather than the E, and B, ; [J] is then
restricted to free sources and the constant factors &, and Z, disappear.

By 1916, Einstein had presented his landmark paper on general relativity [32] wherein the
treatment of gravitation depended heavily on the use of the tensor formalism that had been
quite recently developed by Ricci and Levi-Civita [33]. In that paper he applied their
formalism to the free-space Maxwell’s equations” and deduced their most succinct form thus
far

0,F" =1

oF +0 F +0F =0 ®)
par+ o rp+ T po

For present purposes, both F“ and F,, may be read as Minkowski’s F

" v » and similarly for
J#. Summation over the repeated index v is implied in the first equation, whereas in the
second p, oand z are any three of the four indices, leading to a different linear equation for
each choice of the single index that is omitted. While this tensor rendition simply appears to
restate Minkowski’s version in a more elegant and formal way, a key advantage is that the

covariance of Maxwell’s equations is readily demonstrated [1, 8§11.8-9, pp. 374-80].

By dropping the rigorous tensor formalism and turning to ordinary matrix algebra, the
equations of Minkowski and Einstein may be written in a form that is more transparent than
the former, yet more compact than the latter. With the inclusion of the auxiliary fields D and
H, this leads to [34, §1.21]

[a]' [F]=01 []'[6]=[/] (10)i

" In referring to Maxwell’s equations, Einstein had by now dropped his previous inclusion of Hertz’s
name.
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Here [2]" is the transpose of [2], i.e. the row vector [8,,0,.0,.0, |, while [F], [G] and

[/]are
0 -E, E, -jB 0 -H, H, D 3
EZ 0 _EX _jBY. _ Hz 0 _Hx JDy Jy .
[F]_ _Ey Ex 0 _sz 1 [G]_ _Hy Hx 0 JDZ , [J]_ ‘]x (10)“
jB, jB, jB, 0 -jb, -jb, -jb, © ip

in which the J, and p are now restricted to the free sources.

3.2 Elie Cartan

Still early in the 20™ Century, Cartan was a leading light in the development of differential
forms [35], which were to become a key tool of mathematical physics and advanced
electromagnetic theory [36; 37]. A close link exists between differential forms and the
integral form of Maxwell’s equations but, before we expand on that premise, we give a
simplified and very basic sketch of how they work.

Starting from the basic notion of a differential, e.g. df (x,y,z)=0,f dx+0, fdy+0,f dz,

the similar looking 1-form f = f dx+ f dy+ f,dz is quite distinct. In fact, in a generalized

way it corresponds to an ordinary vector to the extent that the infinitesimal scalar quantities

A

dx, dy and dz may also be treated as independent symbols, like X, yand 2 but with

entirely different connotations. Provided the meaning of <> is limited to this sort of
correspondence, we may therefore write

f=fdx+fdy+fdz « f=fx+fy+fz2
but note that while unit vectors are dimensionless, the differentials dx, dy,dz are not.
Extending the idea, a 2-form corresponds to an axial vector (or to a bivector) thus
U=U,dydz+U dzdx+U,dxdy <« U=Ux+U y+U,:z
where x=yx2, y=2xX and z=XxYy. While fg, the direct product of two 1-forms f and g,

will clearly include a 2-form in the result, it is their exterior product, denoted by f A g, that

produces exclusively a 2-form. Defined as being antisymmetric, f Ag=—g A f , so that the
exterior product is related to the direct product through f A g :( fg—gof )/2 In particular, if

duand do are any two of the differentials dx, dy and dz, then dundo=-doAadu,
whereas dua du =doado=0. Itis customary, however, to drop the A in these products and

simply write dxdy and dydz, etc.

Along similar lines, the exterior product of a 1-form with a 2-form yields a 3-form, but in this
case the product is symmetric, as may be inferred from the example:
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dx A(dy Adz)=dxAdy Adz=—dy AdxAdz =dy Adz Adx=(dy Adz)Adx
The general commutation rule is therefore that the exterior product is symmetric when the
sum of the degrees of the forms involved is odd, and antisymmetric when it is even.
A key 1-form is the exterior derivative d which takes the form 0,dx+0,dy+0,dz . By way

of example, the exterior derivative of U is d AU, commonly written as dU , so that

du =d AU z(axdx+8ydy+azdz)/\u

For example, d Ax=(0,dx+0,dy+0,dz)Ax=dx and d A(xy)=ydx+xdy. It is therefore

clear that the exterior derivative of a scalar function is a prescription for its differential.
Applying it to a 1-form, however, we find

dE =(0,dx+0,dy +0,dz) A (E,dx+ E,dy + E,dz)
:(axEy -0,E, )dxdy+(ayEZ —azEy)dydz +(6ZEX -0,E, )dzdx

< dE & VxE

That is to say, in differential forms, dE takes the place of VxE. In the case of a 2-form,
however, by applying the commutation rules we find

dD = (Gxdx+6ydy+8zdz)/\(Dxdydz +D,dzdx + D, dxdy)
=(o,D, +8,D, +8,D, ) dxdydz

& dD & V-D

In contrast to the case with a 1-form such as E, dD takes the place of V-D rather than
V xD. Noting that the differential 3D volume element dxdydz appears in the result, this is an
example of a 3-form, a class that corresponds to a scalar volume density. In 3D we are then
left with one other sort of form, the 0-form, a form of scalar that is free from any association
with a volume density.

Conventionally, the ubiquitous electromagnetic quantities and source densities are
represented by different degrees of forms as follows

O-forms q, ¢C, ¢ (du)ozl 1-forms E, H, A dx, dy,dz

2-fooms D, B, J dydz,dzdx,dxdy | 3-forms p dxdydz

In each case the associated differential elements are shown in the column to the right of the
given symbol. The physical significance of these becomes clearer when we note that E dxis

the decrease in the potential ¢ of a unit charge when, in vector terms, it is moved through an
electric field E by infinitesimal displacementdxX. We also note E=—-d¢ <> E=-V¢.
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Similarly, the 2-form quantities may be associated with a flux, so that, for example, J,dxdy is
the total current that flows through the orientated element of area dxdy, i.e., the area dxdy is
in the xy plane such that a positive flow is along Xxy =z. Finally, the 3-form is fairly self-
evident inasmuch as pdxdydzis the total charge g contained within the volume element
dxdydz .

Following these preliminaries, it should be clear that the result of applying the operator d
depends on the degree of the form that it acts on, so that V,V x and V- are all replaced by
the single operator d ( meaning d A) on its own. The expression of Maxwell’s equations in
terms of differential forms is therefore very straightforward, for we can use this rule to
transcribe Equations (1) into

dD=p "

dB=0

dE=-0,B

dH =J" +6,D

(11)

These are then a direct source for the integral equations which are exactly mirrored by

J‘dD :J'pfree
ov \
[dB=[0=0
ov \
[dE=-5,[B
OA A

[dH =[(3"*+0,D)
oA A

(12)

It has been necessary only to write integral signs on both sides of Equation (11), with the
degree of the form telling us what sort of integral is involved: line, surface or volume. The
integrals on the left-hand side are taken over the closed boundary of the volume or area
associated with the integrals on the right-hand side, that is to say, JA is the closed path taken
around the outside of the area A and oV is the surface enclosing the volume V. Because the
integrands are differential forms, not only are the requisite differentials for the integration
already in place, they also provide the orientation of the paths and surfaces, e.g. dx is along X
and the normal to dxdyis z.

Equations (11) may be put in spacetime form by making the following extensions [37; 38]
d= (ﬁxdx+8ydy+8zdz +6tdt)
As in Minkowski’s matrix, the single 2-form F now represents the complete electromagnetic

field. Likewise, the auxiliary fields combine into a separate 2-form, G, while the free current
and charge densities combine into a single 3-form J. The equations may now be written as

IEEE Antennas and Propagation Magazine , 55(3) 20



THE EVOLUTION OF MAXWELL’S EQUATIONS FROM 1862 TO THE PRESENT DAY

dF =0; dG =J e
where F=EAdt+B; G=-HAadt+D; J=-J"™Adt+p™ (13)
By applying the same simple rules as before and writing d as (d+,dt)r, whered

represents the original 3D exterior derivative 0, dx+0,dy+0,dz, this may be decoded in the
following manner,
dF =(d +dto, ) AE Adt+(d+dtd, )AB
=dEAdt — 0,EAdtAadt + dB + 0,BAdt
(dE+6,B)dt + dB
= 0 + 0

dG =—(d +dtd, JaH adt+(d +dtd, ) AD
=—dH Adt + O,H AdtAadt + dD + 0,DAdt
(-dH +8,D)Adt + dD

_ J free free

+p

Given an operator * that, in 3D, converts a 1-form into a 2-form (its dual) and vice versa,
the substitutions H = #*B and D =&+*E may be made, but this still leaves us with two

separate equations.

3.3 David Hestenes

More recently, David Hestenes [39; 40] and others began promoting geometric algebra,
reviving the 19™ Century work of Hermann Grassmann and William Clifford. This concept
provides an equally powerful counterpart to differential forms and embodies some of the
useful features of quaternions, for example, inverses. A geometric algebra is a vector space in
which the roles of second rank skew-symmetric tensors and differential 2-forms are both
replaced by, the bivector, a single entity formed by the direct multiplication of two
orthogonal vectors. This is in strict contrast to the quaternions where such a product
effectively reverts to a vector. As there is no need to continually refer to some assumed

spatial frame such as {xy,z}, geometric algebra provides a versatile coordinate-free
approach. This means that rather than effectively being labels for ordered components,
symbols such as E and V actually stand for the vectors themselves. Nevertheless, we may
still express these vectors as E=E X+Ey+E,2 and V=%, +y0,+20,, or in terms of
whatever other basis we may find convenient.

The geometric algebra formalism of multivectors allows for a graded hierarchy of entities
called n-vectors, where a 0-vector is a scalar, a 1-vector is the familiar sort of vector, a 2-
vector is a bivector, and so on. It is a key feature that different grades of n-vector may be
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added as well as multiplied, resulting in what is generally a multivector of mixed grade. In
order to distinguish them from the usual 3D vectors, we will write general n-vectors and
multivectors in bold italic, e.g. u,v and so on. By the basic rules of geometric multiplication,

the product uv resolves into the scalar u-v plus the bivector uAV. Note that the wedge
symbol A used in differential forms conveys a similar idea. For 3D vectors, uAnv=luxv

AAA

where | =Xyz is a 3-vector referred to as the unit pseudoscalar. While | takes a role
analogous to the imaginary unit j, it has the additional property that when it multiplies a
vector it creates a bivector. In this fashion, therefore, uv=u-v+uaAv=u-v+Iluxv, which
leads us straight to

VE=V-E+IVxE V(IcB)=1cV-B+1°cV xB
1 1, (1B and 1 where Z,= %
_g_op_E ,[( C ) :—ZOJ_EatE 0

Since the addition of different grades is permitted, we find that we may put both of these
results together so as to render Maxwell’s equations in free space as a single ‘(3+1)D’
equation”

(V+6,)F =J (14)

in which the entire electromagnetic field is expressed as the multivector F =E+ IcB, and
likewise the total electromagnetic source density is expressed as the multivector

Jz%p—%l

We can go on to define an auxiliary electromagnetic field, G =8—10D+ IZ,H, the role of

which is the macroscopic treatment of physical media. Maxwell’s equations then become [41,
85.9]

v free

«V+8JG%J—J -
«V+@)F%i=0

The subscripts 0,1 on the angled brackets indicate that only the 0- and 1-vector (scalar and

vector) grades are to be taken from the result of the enclosed expression ((..);and (..) are

directly analogous to Maxwell’s S. and V.). There are other ways of writing this, but none in

which the electromagnetic field quantities are represented only in terms of the entire fields F

and G.

In spacetime, however, we get a similar but far more effectual expression of these equations,

namely

" Hamilton gave the interpretation (3+1)D for a quaternion such as t+r, the sum of scalar time with
a vector position
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VAF=0
V_G:Jfree

(it should be noted here that the use of bold symbols is usually dropped with these spacetime

(16)

quantities). Since time is now embodied as a vector in this 4D space, V is now equivalent to

X0, + Y0, +10, —%tat in which x, y, z and t are the unit basis vectors of some spacetime

frame. Although J™, F and G retain similar physical definitions to their 3D mixed-

multivector counterparts, J™ is now a pure vector and F and G are both pure bivectors.
Electric and magnetic fields are now just the timelike and spacelike” parts of the same
bivector field, i.e. of F or G as appropriate, and because Equation (16) works in any inertial
frame, it is essentially covariant.

When all is stripped back to a fundamental setting devoid of phenomenological
representations for physical media, the auxiliary fields vanish and Maxwell’s equations are
once again a single equation

VE=1J a7
in which J now comprises all sources of charge and current. This equation is simplicity itself.
Also covariant, it defines an important class of equation that stems from concepts that seem
more abstract than physical. In the more familiar case of complex functions in 2D, VF =0

corresponds to the pair of Cauchy-Riemann conditions 0,F, —0,F, =0 and 0,F, +0,F, =0,

meaning that F must be an analytic function with singularities wherever J =0. In spacetime,
where there are two extra dimensions, solutions of VF =0 are called meromorphic functions,
but otherwise the situation is analogous to 2D. Finally, since all non-null vectors in a
geometric algebra have inverses, we may write down a particular solution of Equation (17) in
closed form, as simply

F=v"'] (18)

where V™ turns out to be an integral operator with a time-dependent Green’s function as its
kernel.

4  VARIATIONS

4.1 The Integral Equations

While we normally think of Maxwell’s equations as differential equations, as we saw in §3.2
their treatment in terms of differential forms leads directly to a set of integral equations. The
integral form is also well known in standard vector analysis [14, pp. 194-6; 34, 81.4; 41, 83.4;
42, ch.1].

" A bivector U is timelike if the sign of UUT is of the same as t° , but for a spacelike bivector it is just
the opposite.
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[D-dA=q"™ (the total charge contained within V')

S

IB .dA=0 (B is always solenoidal )

S (19)
qS E.-dl =-0,® (—the rate of change of magnetic flux passing through A)

P

qSH ~dl=1"+ 1% (the total current passing through A)
p

Here the surface S completely encloses a volume V, whereas the path P completely encloses
an area A, and dA and dl are orientated infinitesimal elements of S and P respectively. The
magnetic flux @ passing through A is then given by L B - dA while the displacement current

19" is given by o, js D-dA. These equations are perhaps most useful as a way of expressing

the physical laws of electromagnetic theory. They have a direct and obvious correspondence
to Equations (12) and (11) of differential forms, but in geometric algebra the inner products
in the first and last equations change to outer products so to maintain the appropriate grades
[41, §3.5].

4.2 Other Ways of Writing the Standard Form

Just how unique is the set of Maxwell’s equations as expressed in (1)? There are undoubtedly
other ways of writing them which work just as well [2, 84], but Equations (1) are unique to
the extent that no constants are required, nor is there any reference to the bound sources that
arise from the electric and magnetic polarizations P and M. However, this situation is quite
arbitrary, for the vanishing of the constants is due to the choice of units, and Equations (1)i
would allow us to switch from the variables D, B, E and H to P, M, E and B, or even to P,
M, E and H, and so on. Maxwell may have set some sort of precedent when he wrote D = ¢E
but, as an enthusiast of molecular theory, it is very likely that he would have brought in P had
the microscopic nature of dielectrics been properly understood at that time. He could then
have considered D to be redundant, or at best auxiliary, for it is P that has a tangible meaning
directly associated with the state of individual molecules. It would have been just as easy for
him to write P =aE as it was to write D = ¢E (in whichever algebraic form). Therefore, had
P and M been preferred over D and H, the equations would have come down to us as

V'SOE — pfree —VP

VB =0
VXE+0,B = 0 (20)
VxB-LOE = 4(3"™+VxM+4,P)

While these may seem to be less succinct, no separate constitutive relations are required.
Moreover, they are just as workable as Equations (1), which simply tidy things up a bit by

IEEE Antennas and Propagation Magazine , 55(3) 24



THE EVOLUTION OF MAXWELL’S EQUATIONS FROM 1862 TO THE PRESENT DAY

replacing two divergences, two curls and two derivatives with just one apiece. In particular,
in the context of media with linear polarisabilities, the differences all ‘come out in the wash’.
In particular, if we put P=aE and M = B into Equations (20), we get
V(g+a)E = p™
V-B 0
VXxE+dB = 0 (21)

1 1 free
Vx| =—-f8B-0 +a|lE = J
(IUO IB] t(/uocz j

The usual form is therefore restored by replacing &, +a with ¢ and ]/yo—,B with 1/ u.

However, the fact that the ‘usual’ form is regarded as being ‘usual’ is clearly a matter of
convention rather than necessity. Besides, Equations (20) are manifestly applicable to free
space (no substitutions required) for here the polarizations simply vanish, giving

V-E = p/g
VB =0
VxE+9,B = 0 (22)

VxB—éatE S

This set is also applicable in a microscopic treatment of media because in this situation bound
charge, rather than being eliminated from the total charge, is embodied within it on a
molecular basis. An entirely separate observation about the form of Equations (20)—(22) is
that all the sources have been placed on the right-hand side whereas all the fields are on the
left-hand side, a convention that some people prefer because it clearly separates the
dependent and independent variables. This is not entirely pedantic — for one thing it avoids

confusing &,0,E, the vacuum contribution to the displacement ‘current’, with a real current
density such as the polarization current 0,P [43].

In the case of the free-space equations, rather than taking E and B as being the principal
fields, some writers advocate keeping D and H in the inhomogeneous equations as excitations
arising from the sources, as distinct from the field strengths E and B [44]. It has also been
commonplace with some writers to take E and H or even, as Lorentz did, d and h. This is

encouraged by the fact that in free space we can exchange D with ¢,E and #,H with B. In

some instances the justification for doing so is the availability of convenient units, e.g. A/m
rather than T. In some other systems, however, the units are the same, so that the exchange is
all too easy. While such variations are understandable in a historical context, in the present
day it should be understood that Equation (1)ii differentiates E from D and B from H;
consequently, when it comes to the fundamental equations in free space we should use
Equations (22) which are in terms of E and B alone. For example, it is never wrong to say
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V-B =0, whereas a statement such as V-H=0 may well become a nonsense if transposed
to the case of physical media. The Chu formulation of electrodynamics [42], by adhering to
the use of E and H even in the Lorentz force, causes some difficulties in this respect [45].

4.3 Back to Quaternions

But quaternions have not, as Gibbs and Heaviside may have wished, been altogether

consigned to the dust. In particular, there has been recent interest in the application of

biquaternions (also known as complex quaternions or octonions) to electromagnetic theory

[46]. In the original quaternion theory Maxwell’s equations in free space reduce to a pair,
VE=—8lp—%atcB

’ (23)

VcB=27,J +%atE

This is similar to the result we obtained with geometric algebra, but prior to combining E and
B as a multivector. This suggests that if we were to combine E and B as the complex
quaternion, F =E+ jcB, a further degree of compactness may be possible. Indeed,
Maxwell’s equations in free space are rendered as a single equation that closely parallels the
(3+1)D multivector form they take in a 3D geometric algebra, Equation (14). Simply by
adding the first row in Equation (23) to j times the second, we obtain

(V—Eéth:—%p+jZOJ (24)

Note that in free space (V—%@JF =0 leads to a wave equation because, instead of the

customary vector rule V2 =V?, with quaternions V* =% + 6% + 62 =—-V?, which leads to

—(V+%8IJ(V—%GJF =(v2—cl2aij =0

5 CONCLUSION

While we have covered some 24 versions of Maxwell’s equations that have come down to us
over the years as a result of both evolutionary progress and new directions, these represent
only those that are close to the mainstream. The version that we commonly see today in
Equations (1) differ from Maxwell’s original form, as represented in Equations (2) and
Figures 1-3, only in some minor respects, mainly in that he employed

e Less sophisticated mathematics

e The vector and scalar potentials, and

e The constitutive relations D=¢E and B = uH.
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Even if it may seem obscure, the quaternion mathematics he used in the Treatise, Equations
(3), is equivalent to, and no less sophisticated than, today’s vector analysis. By this time he

had also brought in B = g, (H + M), and the fact that he still used potentials amounts only to
a different way of expressing things. The changes since then have therefore been due to

e Developments in the mathematical languages of physics

e Advances in knowledge, particularly concerning the nature of electrical charge and the
distinction between polarization and electric displacement

e Refinement of his equations into a basic set comprising Equations (1)—(1)ii, the first
group of which we now regard as being Maxwell’s equations.

The direct path of development of the equations was

e 1862, Maxwell’s first formulation of his equations based on a molecular vortex model

e 1864, his new field-based formulation of them for the Dynamical Theory

e 1873, his subsequent introduction of vectors and quaternions in the Treatise

e 1885, Heaviside disposing of quaternions and potentials and using his vector analysis to
re-formulate Maxwell’s quaternionic equations

e 1902, Lorentz setting down the basic microscopic equations and then using his electron
theory to derive the usual set of four macroscopic equations.

Others contributed, notably

e Hamilton, who discovered quaternions, and Tait who promoted them

e Gibbs, who independently developed vector analysis, and Wilson, who later published it.

e The Maxwellians, who, along with Boltzmann and Foppl, championed and disseminated
Maxwell’s work

e Niven and Thomson, who edited the second and third editions of the treatise and did
much to clarify it and amend errors

e Hertz, who produced a clarified version the equations and validated the revolutionary
prediction of Maxwell’s theory — electromagnetic waves that travel with the speed of
light.

As to the other and more recent ways of writing Maxwell’s equations, it is clear that special

relativity has made a major impact . But contrary to the situation with Newtonian mechanics,

this has not meant that the existing equations have had to be either rewritten or treated as

approximations for, quite remarkably, they still stand as they were. Rather, it has provided a

whole new approach that has led to a better understanding of the foundational principles of

" By virtue of the correspondence principle, Maxwell’s equations are also compatible with elementary
guantum mechanics, in which a key difference is that the electromagnetic field becomes quantized in
the form of photons that exhibit both particle-like and wave-like characters. This discovery resolved
the dichotomy between the wave theory of light, advocated by both Robert Hooke and Christiaan
Huygens, and the particle theory advanced by Sir Isaac Newton (Hooke’s arch rival).
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electrodynamics. It is also clear that several different mathematical structures may be used to
express the same physical laws: vectors, tensors, quaternions, differential forms, geometric
algebra and biquaternions. However, when it comes to seeking the most succinct way of
encoding the fundamental equations, it is perhaps unsurprising that there seem to be strong
parallels between the available structures. While there can be no single mathematical
platform to suit all users and all purposes alike, such parallels tend to suggest that these
different formalisms are simply alternative ways of invoking the same underlying physical
principles and relationships. If, however, we were to consider brevity worthy of special merit,
James Clerk Maxwell would surely have been impressed by the free space Equation (17),
VF =J, together with the Lorentz force castas f =qo-F .

Ultimately, the form taken by the equations is clearly far less important than their underlying
meaning, the essential core of which, at least, must be independent of how the equations
themselves are expressed. Therefore, in spite of all the variations, modifications and
developments, we must give Maxwell himself the credit for successfully gathering together
and setting down the foundations of electromagnetics in terms of equations, albeit in a now
unfamiliar form. In so doing, his signal achievement was the establishment of the first viable
theory of all electromagnetics as a field theory. When early adopters such as the Maxwellians
began communicating and clarifying the theory, it rapidly gained supremacy over ideas of
action at a distance, and by the closing decade of the 19" century it was all but universally
accepted.

6 ADDITIONAL SOURCES OF INFORMATION

Histories concerning the development of electromagnetics and Maxwell’s equations,
o [22-24,47-61]

Information about Maxwell’s equations in various forms, including relativistic,

o [38, 62-66]
Vector analysis, differential forms and geometric algebra,
o [62,67-72]
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