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Abstract 

Maxwell’s Equations have undergone several changes of form in the 150 

years since they first emerged. This has been due not only to changes in 

their mathematical expression and physical interpretation, but also to 

historical accidents and trends. This article examines: what they were in the 

beginning; how they evolved into their customary form over the course of 

40 years; the significant variations there have been since then; who have 

been the major proponents of these changes, and finally, what they did, or 

did not, contribute. Brief explanations of the main mathematical variations 

are included. 
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1 INTRODUCTION 

In this article, each equation numbered from (1) to (24) represents a different version of 

Maxwell’s equations! While these equations are familiar to almost every graduate in physics 

or electrical engineering as 
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they were not always so clear and concise. In these four partial differential equations, the 

vector quantities D , B , E  and H  represent the four electromagnetic fields, namely 

D, is the electric displacement  

B, is the magnetic induction 

E, is the electric field intensity, and 

H, is the magnetic field intensity. 

On the other hand, the sources that generate these fields are the scalar free charge density 

free  and the vector free current density free
J . This form and its many variants (apart from 

trivial changes such as the use of t , an overdot for t  , or even Maxwell’s original d dt ) 

actually owe their existence to several key contributors who tidied up the original equations 

and polished the underlying physics, and who improved the mathematical tools and 

notational niceties. Although they are now universally referred to as Maxwell’s equations, 

they do not actually cover all of the equations that Maxwell deemed necessary for the study 

of electricity and magnetism. As a minimum, the basic constitutive relations  
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(1i) 

and a force equation,  

  q  F E v B
 

(1ii) 

are also required (since these equations may be grouped with Equations (1), we give them the 

same number with the suffices i , ii …). The constitutive relations bring in the fundamental 

constants 0 and 0 that directly relate D  to E  and H  to B in free space while P  and M  

are source densities, respectively the electric and magnetic dipole densities within a material 

body (and clearly vanish in free space). The force equation, known as the Lorentz force, tells 

us the electromagnetic force that acts on a point charge q travelling through an 

electromagnetic field with velocity v .  Only E  and B are involved in this force whereas D  

and H  take no direct part. 
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Our aim in the present article is to sketch out how we got from Maxwell’s original equations 

to the ubiquitous version in Equations (1) by reviewing the roles of the key contributors to its 

mathematical and physical development. We also go beyond Equations (1), which have now 

been extant for over 100 years, to address more recent approaches that have found favor in 

certain areas and which shed further light on the fundamental principles of electrodynamics. 

For the benefit of the general reader we briefly explain the mathematical formalisms involved 

in these approaches, but no appreciation of special relativity will be required. 

In tracing the story, we attempt to give a realistic idea of how Maxwell’s equations appeared 

at each stage. Despite the historical context, we transfer everything to modern symbols and 

conventions, including the international system (SI) with which the majority of people are 

now familiar. While mixing different sets of symbols would have created some confusion, as 

is well known, switching between one system and another causes various constant factors to 

appear or disappear at various places (see, for example, [1, Appendix, Table 2]) leading to a 

potential source of even greater confusion. We can manage better by simply allowing any 

differences of this sort between SI and the original units to pass unchallenged.  In any case, 

Maxwell did not adhere to any single system that could be found in the table just referred to, 

and as to symbols, an example will suffice, Initially, Maxwell did not use the symbol E for 

the electric field, nor did he use subscripts.  Instead, as shown in Figures 1-3, he used P, Q 

and R for the components of E (later, in a similar vein, Hertz used X, Y and Z). This led to 

vector equations having to be written ‘longhand’, i.e. three times, one for each component. 

We therefore keep to ,x yE E and zE , etc., as this will be consistent and clear to all. In 

addition, the original texts often refer to current and charge when it is actually their densities 

that are implied (in fact, t D is still referred to as the displacement ‘current’) and the terms 

‘electric force’ and ‘magnetic force’ may be used in reference to D and H respectively, rather 

than to E and B (which are the only two fields that appear in the Lorentz force). Particular 

care is needed in these situations to determine whether it is the terminology or the equation 

that is at fault [2].  

Finally, although we can never be absolutely certain exactly who did what first and where the 

initial ideas originally came from, it is fairly certain that Heaviside and Lorentz both made 

significant contributions to the clarification and formation of the equations, while Hamilton, 

Heaviside (again), and Gibbs clearly contributed to their mathematical expression. It is also 

clear that Oersted, Ampère, Biot, Savart and Faraday were Maxwell’s antecedents in the 

development of electromagnetic theory, while Boltzmann, Hertz, Kirchhoff, Lorenz and 

Weber all made roughly contemporaneous contributions to it. However, it is not our purpose 

here to reflect on the degree to which any particular contributor may have directly or 

indirectly influenced the formulation of his equations. In a brief sketch of the subject it is not 



THE EVOLUTION OF MAXWELL’S EQUATIONS FROM 1862 TO THE PRESENT DAY 

IEEE Antennas and Propagation Magazine , 55(3)   3 
 

always possible to acknowledge every contribution and, in the end, we have simply attempted 

to be as clear and as accurate as space and time permits. 

 

Figure 1: Maxwell’s Equations as they First Appeared in 1861-2 

This was Maxwell’s first published attempt at a complete set of electrodynamical 

equations, including displacement current. Apart from the term 
2E  that originates in 

the unnumbered equation, he used exactly the same symbols in the Dynamical 

Theory, and comparison with Figure 2 shows that, inconsistencies in minus signs 

excepted, the equations were more or less equivalent. Note that the unnumbered 

equation above expresses only the x components of the vector equation 
1 E D  

(ignoring the minus sign). While the problem with these original equations was the 

connexion with the molecular vortex model, they did lead Maxwell to the same 

conclusions: the existence of electromagnetic waves, and the strong likelihood that 

light was an electromagnetic wave. Elements of this figure were taken from 

Maxwell's original article as it appears in digitized form on 

 http://upload.wikimedia.org/wikipedia/commons/b/b8/On_Physical_Lines_of_Force.pdf   

 

http://upload.wikimedia.org/wikipedia/commons/b/b8/On_Physical_Lines_of_Force.pdf
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Figure 2: Maxwell’s Twenty Symbols and List of Equations  

from the Dynamical Theory 

Maxwell’s equations, and the summary of the symbols he used, as they appear on 

page 486 of the Dynamical Theory. Note that in partial derivatives he wrote d instead 

of   and the character resembling  or   in Equation (F) denotes resistivity. The 

red mark-up indicates the vector and scalar symbols that we use today. Maxwell 

called the vector potential ‘electromagnetic momentum’ because te A  represents a 

force acting on e units of negative charge, and this bears a similarity to the familiar 

mechanical force tm p , where p is mechanical momentum and m is mass. Could it 

have been this analogy that prompted the problem with the signs of e in equations (F) 

and (C)? (Based on the digitized copy of the original article, available on the Royal 

Society of London’s website [4]). 
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Figure 3: Maxwell’s Twenty Equations from the Dynamical Theory 

Maxwell’s twenty equations as they appear over pages 480-485 of the Dynamical 

Theory. Comparison with the earlier equations of 1861-62 shows that a number of 

terms have different signs. There were twenty equations because he wrote one 

equation for each vector component and covered a wide range of electric and 

magnetic phenomena in an attempt to give them a common foundation. What we 

now consider to be the key electromagnetic equations are therefore a subset of these. 

(Based on the digitized copy of the original article, available on the Royal Society of 

London’s website [4]).  

2 MAXWELL TO LORENTZ 

2.1 James Clerk Maxwell 

Arguably, the earliest evidence of Maxwell’s equations are those, shown in Figure 1, given 

by James Clerk Maxwell in a four-part article that he published over the course of March 

1861 to February 1862 [3]. Here, using the concept of “molecular vortices”, he sought a 

mechanical analogy for the behavior of electromagnetic media, mainly as an aid to 

understanding how they mediate the two kinds of electromagnetic force. The resulting 

equations included the novel proposal of a displacement current, leading him to the key 

conclusion that, not only would media conforming to this model support transverse 

electromagnetic waves, but that light could well be such a wave.  
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In December 1864, however, he presented a further paper to the Royal Society of London. In 

this new article, which we will refer to as the Dynamical Theory [4], the essence of these 

equations was retained but the mechanical analogy was abandoned and replaced by the more 

abstract notion, originally due to Faraday, of an electromagnetic field
*
 that pervades all space 

and physical media alike. In so doing, Maxwell avoided the conceptual difficulties of the 

alternative action-at-a-distance theory of Weber [5, p. 67] and gave, for the first time, a 

credible mathematical basis for the universal laws governing electromagnetic phenomena, 

Figures 2 and 3. He had now established the foundational form of Equations (1)–(1)ii above
†
. 

It should be noted, however, that Maxwell brought in not only the electric and magnetic 

fields into his equations, but also the scalar and vector and potentials. Although his own 

major innovation was the inclusion of the displacement current t D  in Ampère’s law, he did 

not have an exact counterpart for the constitutive equation 0 D E P ; rather, he offered the 

linear law D E that was held to characterize dielectrics in the same way that J E  

characterizes conductors. Similarly, he used B H . Although he discussed electric 

polarization in dielectrics, he did so in terms that were conceptual rather than definitive and 

so he did not actually distinguish it from what he called electric displacement. The 

distinction, of course, is clear enough now; polarization exists only in physical media 

whereas displacement can exist in free space. Nevertheless, the absence of fine detail may 

have actually helped Maxwell reach his idea of a displacement current, for he seems to have 

been thinking along the lines that the ether would behave like a real medium, in which case 

his concept of displacement would apply equally well to both. At that time, fortunately, there 

were few theoretical obstacles to dissuade him of his notion. 

By 1873 Maxwell had consolidated his foundational work on electromagnetics by publishing 

a two volume work that we will refer to as the Treatise [6]. The main advance in his 

equations from the Dynamical Theory to the Treatise was notational rather than physical; in 

the former he started out with the aforementioned ‘longhand’ form of vector equations with 

no reference to vectors per se. The mathematical concept of vectors [7, Ch. 1] and their 

representation in terms of indexed components was not in general use at the time. In SI and 

present day notation, the initial forms of his key equations corresponding to Equations (1) 

may be rendered as 

                                                 
*
 “…the Electromagnetic Field…that part of space which contains and surrounds bodies in electric 

and magnetic conditions.” [4, p.460]. 
†
 Notwithstanding this, the force equation was eventually named separately after H. A. Lorentz. 
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Beside each of these equations is the lettered label that Maxwell’s gave them but, for ease of 

comparison, they have been put in the same order as we find them in Equations (1), with (A) 

and (C) being grouped as one. Figure 2, shows Maxwell’s symbols and how he enumerated 

and described his equations, while Figure 3 shows how all 20 of his equations actually 

appeared. Note that there was an inconsistency in his treatment of charge, so that the sign of 

free  in equation (G) is wrong. It was in the two homogeneous equations, (B) and (D), that he 

employed the vector and scalar potentials A and . Although this may seems a bit odd today, 

as Heaviside was to show, his equation (B) is the same as  B A , which of course leads 

to 0 B , and similarly (D) leads to t  E B
 
provided that all the jv are set to zero. 

Equations (2) are therefore just a different way of expressing Equations (1).  However, since 

the jv  are the components of a velocity, their presence in the original equation also embodies 

an equivalent of the Lorentz force through a velocity dependent modification of the electric 

field itself – an idea that is closer indeed to tenets of modern relativity. That aside, he also 

gave separate equations (L)
*
 and (J) that, when taken together in the form q dl  F E I B , 

are also equivalent to the Lorentz force, with dlI being the same infinitesimal current element 

that we find in the Biot and Savart force law. 

Although Maxwell generally adhered to the use of  ‘longhand’ equations in his treatise, he 

did make a radical step forward by also introducing W.R. Hamilton’s quaternions [7, 8], 

perhaps as a result of the influence of his close friend P. G. Tait, who had published a treatise 

on them in 1867 [9]. Since that was just after the Dynamical Theory, it gave Maxwell plenty 

of time to take the new ideas on board and take a step forward in a mathematical direction.  

Quaternions have four components, one of which is a scalar and the other three of which are 

components of a vector; they also embody the needs of complex arithmetic, dot and cross 

products, and provide a familiar form of notation for the 3D basis vectors: i, j, k. For 

example, they now made possible the representation of the electric field as the single entity 

E, meaning x y zE E E i j k , and the creation of vector derivative x y z     i j k .  An 

expression such as E  would then be written as S . E , in which the role of the operator 

                                                 
*
 The equation label “(D)” on p. 491 of Maxwell’s original text is presumably a misprint for “(L)”, 

which would logically be the next label in sequence. 
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S .  is to pick out the scalar part of the argument, whereas  V .  picks out the vector part, giving 

us V E . E  . The meaning of E  is that x y z    i j k  and x y zE E E i j k  are to be 

multiplied directly term by term, observing left to right order and using Hamilton’s basic 

rule
*
, 

2 2 2 1    i j k ijk . It is readily verified that E  has the requisite form of a scalar 

plus a vector, and leads to S V     E . E . E E E     . Keeping the labeling of his 

original equations for ease of comparison, the equations that we are chiefly interested kept 

the same meaning but emerged in a new form [6, Arts. 609-19] 
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They are shown as quaternions on the left, whereas on the right they are shown in the usual 

notation. Although Maxwell chose German letters as symbols for the vectors, as shown in 

Figure 4, most of them stay with us, albeit in more familiar Roman form, namely A, B, D, E, 

and H. In addition to these, Maxwell also introduced the magnetic constitutive equation now 

written as  0 B H M , but it is curious that this did not draw him towards a similar 

electrical version as he still adhered to D E. As already explained above, equation (D) 

leads directly to the Lorentz force on a unit point charge. However, Maxwell made a mistake 

in converting it to a force acting on current and charge densities [6, Art. 618]. In addition to 

the original error pointed out by Fitzgerald and referred to in Thomson’s footnote, it is now 

also clear that the force acting on a current density should not include the entire displacement 

current, which is  0t  E P , since only the polarization current t P represents an actual 

current density
†
. On the other hand, he did fix the sign error in equation (G)!  

We find that while little else had changed in any physical sense from the equations in his 

Dynamical Theory,  and despite Equations (B) and (D) still not being directly comparable 

with their present-day forms, it is much easier to see the connexion between these quaternion 

equations and their vector counterparts. Eventually, however, the quaternion formalism lost 

                                                 
*
  He is said to have inscribed this equation on a bridge over the river Liffe in Dublin. There were to 

be no scruples about ‘adding apples and pears’, or rather scalars and vectors, a practice later banned 

by the vector analysts.   
†
 This error arose in the Dynamical Theory because Maxwell’s concept of displacement was based on 

the movement of charges, even in the ether. Maxwell made other errors; notably, he misinterpreted 

the force acting on a current as acting on the conductor that bears the current [5, Art 501]. This so 

rankled with one student of the Treatise, E. B. Hall, that it set him on the path of discovering the Hall 

effect [11]. 
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ground to vector analysis, possibly because the latter was seen by many as being much 

simpler in concept and quite adequate for the purposes of most physicists and engineers.  

 

Figure 4: Maxwell’s Old German Symbols for the Vectors used in the Treatise. 

The Old German letters A, B, D, E and H correspond to the roman letters A, B, 

D, E and H, all of which are the symbols still in regular use today for key 

electromagnetic quantities. The ‘constituents’ are the vector components, as they 

were in the Dynamical Theory and [3]. (Reproduced from Art. 618, Vol. 2 of the 1
st
 

Edition (1873), of Maxwell’s treatise, digitized by Google Books). 

2.2 Oliver Heaviside 

Oliver Heaviside, who was largely self-taught, was so eager to get to grips with Maxwell’s 

electromagnetic theory that he studied the Treatise avidly until he was well enough versed in 

it to forge his own way ahead with the theory. At about the same time that Maxwell was 

publishing his treatise, Heaviside was publishing in journals such as the Electrician and the 

Telegraphic Journal. This developed into a considerable body of work that he later 

republished as Electrical Papers [10] and Electromagnetic Theory [11]. The publication of 

one such article [10, Vol. 1, Art. 30, §§1-9] commenced in January 1885 and over the course 

of nine separate issues (“sections”), Heaviside gave the reader his ‘rough sketch’ of 

Maxwell’s theory.  

While Heaviside was an enthusiastic proponent of Maxwell’s theory, he was very much less 

sympathetic to his use of quaternions. He felt that these were difficult and, as a consequence, 

unpopular, even citing Tait’s book as one of the main reasons for this! In his view, 

quaternions were a handicap that had prevented Maxwell from doing himself full justice and 

as a result he had not achieved the level of acclaim that he undoubtedly deserved [10, Vol. 1. 

Art 26, §15]:  

“…there is no question as to the difficulty and the practical inconvenience of the 

quaternionic system.”  
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Heaviside’s main purpose in this serialized article was therefore to give Maxwell’s theory a 

clearer exposure by employing a cut-down vector algebra drawn out of the quaternions.  Like 

many of Heaviside’s mathematical ideas, this was innovative, but he did not throw the baby 

out with the bathwater, rather he simply dispensed with the difficulties. He retained vectors 

and scalars but did not allow addition between them; the square of a vector was to be positive 

rather than negative, and the multiplication of vectors was to be allowed only through scalar 

(inner) and vector (cross) products, both of which had simple geometrical meanings. These 

ideas were introduced in 1882 [10, Vol. 1, XXIV, §1], developed in 1885 [10, vol. 2, Art. 

31], and later published in 1891-92 as Elements of Vectorial Algebra and Analysis [11, Ch. 

3].  

This first innovation greatly improved the readability of Maxwell’s equations, but as to their 

actual content, he did not condense 20 into just four, as some authors have claimed, since 

Maxwell had already achieved effectively the same thing in Equations (3); nor did he even 

put the four main equations together into a single group as we know them now, but what he 

produced did contain four familiar looking equations, 
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The Roman numerals used here are not actual equation numbers, rather they indicate the 

installment that each equation appeared in, making it quite clear that they emerged separately 

over a period of months, along with D E, 
cond J E  and the like, each of his equations 

more or less matching one from Maxwell’s Treatise. In these, his second major step forward 

was to eliminate the potentials in Maxwell’s equations (3) by taking the divergence of 

equation (B) and the curl of equation (D), from which he also abstracted the V .vB  term to 

correspond with measuring E in a fixed frame of reference rather than on a moving conductor 

(see the discussion in §2.1). Although these equations were to be repeated frequently 

throughout Heaviside’s vast outpouring of work, the only identifiable ‘special set’ seems to 

be (III) and (IV) which, because of their cross-coupling, he called the “duplex equations”.  

2.3 J. Willard Gibbs 

The American scientist J. Willard Gibbs, who gave his name to the Gibbs’ phenomenon, is 

mainly renowned for his work on thermodynamics, a subject in which Maxwell was also 

much involved.  The two men corresponded, but it was generally on this subject rather than 

electromagnetic theory. Gibbs made other significant advances in mathematics, in particular 

vector analysis, but all the same he did not contribute directly to the reformulation of 
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Maxwell’s equations; he is, however, credited with providing the familiar vector formalism 

that we normally use for them today.  More or less at the same time that Heaviside was 

writing on, and using to advantage, his own synthesis of vector analysis, Gibbs produced a 

pamphlet [13] on very similar ideas as an accompaniment to the lectures he gave at Yale 

University during 1881-84. A more complete compilation of Gibbs’ lectures was published in 

1901 by E. B. Wilson as Vector Analysis [14]. In his preface, Wilson acknowledges the 

contribution made by Heaviside: 

“By far the greater part of the material… has been taken from the course of lectures on 

Vector Analysis delivered…by Professor Gibbs. Some use, however, has been made 

of the chapters on Vector Analysis in Mr. Oliver Heaviside’s Electromagnetic Theory 

… and in Professor Fӧppl’s lectures on Maxwell’s Theory of Electricity …”  

While Wilson briefly included the “duplex equations” in his book (in both differential and 

integral form) Gibbs’ original pamphlet had been purely mathematical. In fact, it had become 

known to Heaviside only in 1888 [10, Vol. 2, Art. 52, §6, footnote to p. 529]. He later said of 

Gibbs’ likeminded approach [10, Vol. 1, Art. 26, §17, footnote on pp. 271-272]:  

“Professor Willard Gibbs, the author of a valuable work on vector analysis, also 

ignores the quaternion, abolishes the minus sign and the double signification of a 

vector, following Grassmann rather than Hamilton.”  

Independently, it would seem, they had the same idea of a vector analysis founded on the 

simplification of quaternion theory by salvaging the vector core from the rest. Actually, there 

were strong feelings both for and against quaternions. When P. G. Tait claimed in the preface 

of his book [9] that “…Gibbs must be ranked as one of the retarders of Quaternion 

progress…”, Heaviside came to Gibbs’ defense with “This may be very true; but Professor 

Gibbs is anything but a retarder of progress in vector analysis…” [10, Vol. 2, Art. 52, §6, 

footnote to p. 529]. The differences between Gibbs’ and Heaviside’s ideas were minor, for 

example, Heaviside wrote out div and curl and used the notation ab and Vab for the scalar 

and vector products respectively, whereas Gibbs introduced the notation we use today,  , 

 , a b  and a b . However, in spite of their overall similarity, it is undeniable that Gibbs’ 

book was a major factor in the dissemination of the language of vector analysis, a language 

that has prevailed across a wide body of physics and engineering ever since. 

2.4 Heinrich Hertz 

In mainland Europe, Maxwell’s equations were often referred to as the Maxwell-Hertz 

equations.  In his revolutionary 1905 paper on special relativity [15], Albert Einstein not only 

refers to them as such, but quotes Hertz’s ‘longhand’ formulation in preference to those of 

either Heaviside, Lorentz or Fӧppl, who had all adopted vector analysis.  
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Hertz’s ideas on electromagnetic theory [16] originally stemmed from Helmholtz, who 

started out as a follower of Weber rather than Maxwell. In the long run, however, 

Helmholtz’s theories were not a great success [17, p. 113] and so Hertz came to embrace 

Maxwell’s equations [18, p. 20]: 

“I have rather been guided by Helmholtz’s work [but] the physical basis of 

Helmholtz’s theory disappears as soon as action at distance is disregarded. I therefore 

endeavored to form for myself… the necessary physical conceptions, starting from 

Maxwell’s equations but otherwise simplifying [his] theory as far as possible” 

As to his own contribution in this respect versus that of Heaviside, he reveals in his 1890 

paper [19]: 

“I have been led to endeavor for some time past to sift Maxwell’s formulae and to 

separate their essential significance from the particular form in which they first 

happened to appear… Mr. Oliver Heaviside has been working in the same direction 

ever since 1885…and the simplest form which [his] equations thereby obtain is 

essentially the same as that at which I arrive. In this respect, Mr. Heaviside has the 

priority.” 

Like Heaviside, his aim was to achieve the clarity that was lacking in Maxwell’s exposition. 

Unlike Heaviside, however, he made no attempt to modernize their mathematical structure; in 

fact, he took as his mathematical basis the same sort of elementary formulation that Maxwell 

had first used, for example, , ,X Y Z  for the components of E and , ,L M N  for H. After 

adjustment to a conventional right-hand co-ordinate system, his general form of the duplex 

equations appeared as 

 (9a)… 

t x z y y z

t y x z z x

t z y z x y

B E E

B E E

B E E

    


    

    

       (9b)… 

t x y z z y x

t y z x x z y

t z x y y z z

D H H J

D H H J

D H H J

    


    


      

(5i) 

As did Heaviside, he made them clearer by removing the potentials; he then presented them 

in separate forms for free space, isotropic insulators, conductors, etc. with the general version 

above [18, p. 211] tacked on at the end. The divergence equations, however, are far from 

clear. Hertz’s ‘electric polarization’  X,Y,Z  is actually our D, while his ‘magnetic 

polarization’  L,M,N  is actually our B. The electric divergence equations [18, pp. 213-4] 

are then given as 

  
x x z free

x x z true

X Y Z e

e

     

     X Y Z
 (5ii) 
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where  , ,X Y Z  corresponds to E and e is our  . He goes on to give an identical prescription 

for magnetic charge so that in both cases not only do the terms true and free appear to be 

effectively reversed compared to the present day usage of total and free respectively
*
, but 

also 0 B  is treated analogously to 0 D  as being a local rather than a global 

condition. 

2.5 Ludwig Boltzmann and August Fӧppl 

Boltzmann and Fӧppl are better known for their contributions to thermodynamics and 

structural mechanics respectively, but these are fields in which Maxwell also made 

significant contributions.  Although Boltzmann did work at an electromagnetic theory of his 

own, he later came to be a proponent of Maxwell’s doctrine [20].  The fact that he 

corresponded with both Heaviside and Hertz could well have helped the dissemination in 

mainland Europe of Maxwell’s theory and of Heaviside’s recent progress in elucidating it.   

Fӧppl took part in the correspondence with Boltzmann and Heaviside, [17, p. 113]. Being 

enthusiastic about the Maxwell-Heaviside theory, his main contribution was the publication 

of a book in 1894, Introduction to the Maxwellian Theory of Electricity [21]. This work is 

significant because, unlike Heaviside’s, it was not a collection of papers, it was a proper 

book. The treatment of vector analysis and electromagnetics is well organized and clear; 

crucially, being in German, it must have done much to publicize in mainland Europe the 

ideas of Maxwell and Heaviside, to both of whom it clearly pays homage [17, p. 113]:  

“The works of [Heaviside] have in general influenced my presentation more than 

those of any other physicist with the obvious exception of Maxwell himself.” 

While its influence even spread as far afield as Wilson and Gibbs (see the quotation in 

Section 2.3 above), Fӧppl’s book and name would surely have been much better known today 

had an English translation been readily available.  

2.6 Other “Maxwellians” 

A handful of scientists who actively promoted Maxwell’s ideas in the closing decades of the 

19
th

 Century came to be known as the “Maxwellians” [22, 23] . Heaviside and Hertz were 

two, and the others were Oliver Lodge, who made advances in radio technology, and George 

Fitzgerald, of the Lorentz–Fitzgerald contraction. Although neither Lodge nor Fitzgerald 

contributed to the actual equations, along with the other Maxwellians they played a 

significant role in getting them generally accepted. However, Fӧppl and Boltzmann clearly 

also contributed to this, as did W. D. Niven, who published Maxwell’s collected works [24] 

                                                 
*
 Some authors do use the term ‘real’, meaning ‘free’, but Hertz also used the term ‘free’ and in an 

entirely different context. See Hertz’s own description [18, pp. 214]. Fӧppl followed Hertz’s 

definitions in this respect. 
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and edited and completed the second edition of the Treatise (1881), and J. J. Thomson, 

discover of cathode rays, who revised it for the third and final edition (1891). 

2.7 Hendrik Lorentz  

In 1892, Lorentz published an article [25] in which he presented Maxwell’s theory along 

lines that closely followed Hertz’s approach. He was also aware of Heaviside’s work 

(perhaps through Fӧppl) and introduced vector notation, using it side by side with the original 

Maxwell-Hertzian longhand format, for example, he stated [25, ch. 1, p. 11, §7] 

“The current …will be represented byC , with u, v, w as short-form for , ,x y zC C C … 

The magnetic force and its components [will be represented] by H ,     , and the 

magnetic induction and its components by B , , ,a b c .”   

By the time of his 1902 paper [26], however, Lorentz had more fully taken to vector analysis, 

but using a notation that was somewhat different to that of any of the aforementioned 

adherents. His goal was to develop the fundamental equations of electromagnetics via his 

electron theory, and in  so doing he gave us Maxwell’s equations as a fundamental set for 

what appears to be the first time 

 

 

 

 

 

   

2

2

0

I div

V div 0

IV rot

III rot

VI

t

t

c

c











  

  

  

d

h

d h

h d v

f d v h

 (6) 

In these equations rot means the same thing as curl (Maxwell originated both rotation and the 

more familiar term curl). In addition, Lorentz deliberately uses d and h rather than the 

expected D and H because he is referring not to these macroscopic fields, but to the 

microscopic fields 0d E and 0h B , that is to say, the fields we would encounter within 

matter by accounting for every iota of static and moving charge, here represented by   and 

v  respectively
*
. These were to be his underpinning of Maxwell’s essentially macroscopic 

equations, in which the usual macroscopic fields are to be seen as arising from the 

microscopic ones by a process of spatial averaging.  With these, Lorentz also includes 

equation (VI), which expresses the force acting on a unit charge, as being fundamental; it is 

of course equivalent to the present day form of the Lorentz force, Equation (1)ii, that actually 

defines what we mean by E and B. 

From this microscopic basis, Lorentz then goes on to recover Equations (1) in the form 

                                                 
*
 In reality, separate charge densities are required for the static and moving charges. 
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 

 

 

 

I div

V div 0

IV rot

III rot   = 

t

 

 

  



D

B

E B

H J    where 

 

cond

t    J D J C R  

(7)

 

The only real difference is that the free current density free
J  is expressed as the sum of three 

terms: a conduction current cond
J , a convection current

*
 C, and a Rӧntgen current R.  The last 

two terms, which are are related to the motions of the body of a medium, or within it,  are 

now rarely split out in this way. Lorentz also gave us the full constitutive equation for 

dielectrics, 0 D E P , which goes beyond Maxwell’s concept of displacement by 

distinguishing the in vacuo displacement 0 E  from the physical electrical polarization P. 

Although he used the term ‘measurable’ rather than ‘free’, he nevertheless remedied Hertz’s 

contrary definition of ‘free’ sources.  

Strangely, the name Maxwell appears nowhere in this article, and the same is true of a later 

one in which Lorentz refers to equations (1)i and (1)ii as “the fundamental equations of the 

theory of  electrons”, giving only “M. E.” as the source [27, §3]. However, this abbreviation 

did not mean ‘Maxwell’s equations’, rather it indicated a previous article of his in 

Mathematischen Encyklopädie [28]. Perhaps he now felt that his electron theory had 

superseded Maxwell’s original phenomenological theory. Nevertheless, the said article in 

“M. E.” frequently refers to Maxwell, and by embracing the vector analysis of Heaviside and 

Gibbs, carefully reconstructing the Maxwellian groundwork, tackling the microscopic model 

and focusing on the essential equations, all of which he published in detail, Lorentz’s 

contribution was highly significant. 

3 OTHER FORMS 

If the advances made by Heaviside and Lorentz led to Equations (1)–(1)ii in more or less 

their present day forms, what changes have taken place since? By and large, this version 

continues to be widely used because the vector analysis of Heaviside and Gibbs is still a 

cornerstone of the mathematical framework of engineering, physics and applied mathematics. 

But in advanced subjects like mathematical physics, there is a need for alternative 

frameworks that are capable of dealing with such things as special and general relativity, the 

efficient computation of fields, and new concepts in general. As a result, we are likely to 

come across many other forms of the equations throughout the literature from the early 

1900’s to the present day. Maxwell himself would have agreed that any mathematical 

innovation that would reveal more about the true nature of the laws of electrodynamics, or at 

                                                 
*
 In Lorentz’s use of the term, a convection current was not the same as an eddy current 
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least make them clearer and easier to understand, would be worth looking at. Indeed, he 

himself had taken that step in embracing quaternions – the rest of the scientific world, on the 

other hand, seemed not to be quite ready for them at the time. We now trace the key recent 

developments. 

3.1 Hermann Minkowski and Albert Einstein 

In the early 20
th

 Century, special relativity was brought to bear on electromagnetic theory 

with a startling explanation of the negative results of the Michelson-Morley experiment: there 

is no material ether, the speed of light in vacuo is a universal constant, and we live in a four 

dimensional world. It was Einstein who made the major breakthrough with the theory of 

special relativity, and in particular his revelation that the observed magnetic field of a moving 

charge originates from a purely electric phenomenon, the Coulomb field of the charge in its 

own rest frame [15]. More generally, he showed that the laws of electrodynamics were 

covariant [29, 30]
*
, that is to say, Maxwell’s equations apply in any reference frame, in spite 

of the observed fields, sources and coordinates all appearing different, for example:  

 (unprimed frame)  
t t

        E B E B 
  
(primed frame)  

It was Minkowski, however, who brought the concept of spacetime to bear on Lorentz’s 

rendition of Maxwell’s equations in his 1908 paper [31]. He showed that not only could time 

and position be combined as one four-vector  x , charge and current (including intrinsic 

magnetic current) could be combined to form another 4-vector,  J . In a similar vein, the 

components of E and B may be combined to form a 4-matrix  F , specifically 

   ;

x

y
x

z

jct

 
 
 
 
 
 

     ;

x

y

z

jct

 
 

  
 
 
  

    

0

0

0

0

;

x

x

x

Z J

Z J
J

Z J

j 

 
 
 
 
 
 

    

0

0
 

0

0

z y x

z x y

y x z

x y z

cB cB jE

cB cB jE
F

cB cB jE

jE jE jE

  
 
 
 
  
 
  

 (8)i 

where c is the speed of light, and 0Z  is the characteristic impedance, in free space. As a 

result, Maxwell’s equations in free space could be expressed as two sets of four simultaneous 

linear equations 

                                                 
*
 The subject of Einstein’s priority over Lorentz and Poincaré in this matter is discussed in the given 

references. 
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 (A)…     

2 12 3 13 4 14 1

1 21 3 23 4 24 2

1 31 2 32 4 34 3

1 41 2 42 3 43 4

F F F J

F F F J

F F F J

F F F J

   

   

   

   

  

  (8)ii 

 

(B)…

   

2 34 3 42 4 23

1 43 3 14 4 31

1 24 2 41 4 12

1 32 2 13 3 21

0

0

0

0

F F F

F F F

F F F

F F F

   

   

   

      

 

For example, 1 41 2 42 3 43 4F F F J       equates to 
0x x y y z zjE jE jE j     , that is to 

say, 0  E . In the case of general media, he obtained a very similar result employing 

kD  and kH  in the four inhomogeneous equations rather than the kE  and kB ;  J
 
is then 

restricted to free sources and the constant factors 0  
and 0Z  disappear. 

By 1916, Einstein had presented his landmark paper on general relativity [32] wherein the 

treatment of gravitation depended heavily on the use of the tensor formalism that had been 

quite recently developed by Ricci and Levi-Civita [33]. In that paper he applied their 

formalism to the free-space Maxwell’s equations
*
 and deduced their most succinct form thus 

far 

 
0

F J

F F F

 



     

 

     
 

(9) 

For present purposes, both F 
 and F  

may be read as Minkowski’s F , and similarly for 

J 
. Summation over the repeated index  is implied in the first equation, whereas in the 

second ,  and  are any three of the four indices, leading to a different linear equation for 

each choice of the single index that is omitted. While this tensor rendition simply appears to 

restate Minkowski’s version in a more elegant and formal way, a key advantage is that the 

covariance of Maxwell’s equations is readily demonstrated [1, §§11.8-9, pp. 374-80].  

By dropping the rigorous tensor formalism and turning to ordinary matrix algebra, the 

equations of Minkowski and Einstein may be written in a form that is more transparent than 

the former, yet more compact than the latter. With the inclusion of the auxiliary fields D and 

H, this leads to [34, §1.21] 

    
T

0; F
           

     
T

 G J  (10)i 

                                                 
*
 In referring to Maxwell’s equations, Einstein had by now dropped his previous inclusion of Hertz’s 

name. 
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Here  
T

  is the transpose of   , i.e. the row vector , , ,x y z t
      , while  F ,  G

 
and

 

 J are  

 

0

0
;

0

0

z y x

z x y

y x z

x y z

E E jB

E E jB

E E jB

jB jB jB

  
 

 
 
  
 
  

F     

0

0
;

0

0

z y x

z x y

y x z

x y z

H H jD

H H jD

H H jD

jD jD jD

 
 


 
 
 
    

G     

x

y

x

J

J

J

j

 
 
 
 
 
 

J

 

(10)ii 

in which the kJ  and    are now restricted to the  free sources.  

3.2 Elie Cartan  

Still early in the 20
th

 Century, Cartan was a leading light in the development of differential 

forms [35], which were to become a key tool of mathematical physics and advanced 

electromagnetic theory [36; 37]. A close link exists between differential forms and the 

integral form of Maxwell’s equations but, before we expand on that premise, we give a 

simplified and very basic sketch of how they work.  

Starting from the basic notion of a differential, e.g.  , , x y zdf x y z f dx f dy f dz    , 

the similar looking 1-form x x zf f dx f dy f dz    is quite distinct. In fact, in a generalized 

way it corresponds to an ordinary vector to the extent that the infinitesimal scalar quantities 

dx , dy  and dz  may also be treated as independent symbols, like x̂ , ŷ and ẑ  but with 

entirely different connotations. Provided the meaning of  is limited to this sort of 

correspondence, we may therefore write 

  x y zf f dx f dy f dz           ˆ ˆ ˆ
x y zf f f  f x y z  

but note that while unit vectors are dimensionless, the differentials dx , dy , dz  are not. 

Extending the idea, a 2-form corresponds to an axial vector (or to a bivector) thus 

 x y zU U dydz U dzdx U dxdy           x y zU U U  U x y z  

where ˆ ˆ y zx , ˆ ˆ z xy  and ˆ ˆ x yz . While fg , the direct product of two 1-forms f and g, 

will clearly include a 2-form in the result, it is their exterior product, denoted by f g , that 

produces exclusively a 2-form. Defined as being antisymmetric, f g g f    , so that the 

exterior product is related to the direct product through   2f g fg gf   . In particular, if 

du and d  are any two of the differentials dx , dy  and dz , then du d d du    , 

whereas 0du du d d     . It is customary, however, to drop the   in these products and 

simply write dxdy and dydz , etc. 

Along similar lines, the exterior product of a 1-form with a 2-form yields a 3-form, but in this 

case the product is symmetric, as may be inferred from the example:  
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   dx dy dz dx dy dz dy dx dz dy dz dx dy dz dx                

The general commutation rule is therefore that the exterior product is symmetric when the 

sum of the degrees of the forms involved is odd, and antisymmetric when it is even. 

 A key 1-form is the exterior derivative d which takes the form
 x y zdx dy dz   . By way 

of example, the exterior derivative of U  is d U ,  commonly written as dU , so that 

  x y zdU d U dx dy dz U          

For example,  x y zd x dx dy dz x dx          and  d xy ydx xdy   . It is therefore 

clear that the exterior derivative of a scalar function is a prescription for its differential. 

Applying it to a 1-form, however, we find 

 
   

     

x y z x y z

x y y x y z z y z x x z

dE dx dy dz E dx E dy E dz

E E dxdy E E dydz E E dzdx

        

        

 

                             dE  E  

That is to say, in differential forms, dE  takes the place of E .  In the case of a 2-form, 

however, by applying the commutation rules we find  

 
   

 

x y z x y z

x x y y z z

dD dx dy dz D dydz D dzdx D dxdy

D D D dxdydz

        

     

 

                             dD  D  

In contrast to the case with a 1-form such as E, dD  takes the place of D  rather than 

D .  Noting that the differential 3D volume element dxdydz appears in the result, this is an 

example of a 3-form, a class that corresponds to a scalar volume density. In 3D we are then 

left with one other sort of form, the 0-form, a form of scalar that is free from any association 

with a volume density.  

Conventionally, the ubiquitous electromagnetic quantities and source densities are 

represented by different degrees of forms as follows 

0-forms q,    c,       
0

1du   1-forms E,   H,   A , ,dx dy dz  

2-forms D,    B,    J , ,dydz dzdx dxdy  3-forms   dxdydz  

In each case the associated differential elements are shown in the column to the right of the 

given symbol. The physical significance of these becomes clearer when we note that xE dx is 

the decrease in the potential  of a unit charge when, in vector terms, it is moved through an 

electric field E by infinitesimal displacement ˆdxx . We also note E d     E  . 
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Similarly, the 2-form quantities may be associated with a flux, so that, for example, zJ dxdy is 

the total current that flows through the orientated element of area dxdy , i.e., the area dxdy  is 

in the xy plane such that a positive flow is along ˆ ˆ x y z . Finally, the 3-form is fairly self-

evident inasmuch as dxdydz is the total charge q contained within the volume element 

dxdydz . 

Following these preliminaries, it should be clear that the result of applying the operator d 

depends on the degree of the form that it acts on, so that  ,   and   are all replaced by 

the single operator d ( meaning d  ) on its own. The expression of Maxwell’s equations in 

terms of differential forms is therefore very straightforward, for we can use this rule to 

transcribe Equations (1) into 

 
0

free

t

free

t

dD

dB

dE B

dH J D





 

   

(11) 

These are then a direct source for the integral equations which are exactly mirrored by 
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0 0
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V V

V V

t

A A
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t
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dE B

dH J D
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
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



 

 

  

 

 

 

 
 

(12) 

It has been necessary only to write integral signs on both sides of Equation (11), with the 

degree of the form telling us what sort of integral is involved: line, surface or volume. The 

integrals on the left-hand side are taken over the closed boundary of the volume or area 

associated with the integrals on the right-hand side, that is to say, A  is the closed path taken 

around the outside of the area A and V is the surface enclosing the volume V. Because the 

integrands are differential forms, not only are the requisite differentials for the integration 

already in place, they also provide the orientation of the paths and surfaces, e.g. dx is along x̂  

and the normal to dxdy is z . 

Equations (11) may be put in spacetime form by making the following extensions [37; 38] 

  x y z td dx dy dz dt         

As in Minkowski’s matrix, the single 2-form F now represents the complete electromagnetic 

field. Likewise, the auxiliary fields combine into a separate 2-form, G, while the free current 

and charge densities combine into a single 3-form J. The equations may now be written as 



THE EVOLUTION OF MAXWELL’S EQUATIONS FROM 1862 TO THE PRESENT DAY 

IEEE Antennas and Propagation Magazine , 55(3)   21 
 

 0dF  ;        
freedG J  

 where    F E dt B   ;      G H dt D    ;     
free freeJ J dt      (13) 

 By applying the same simple rules as before and writing d as  td dt   , where d

represents the  original 3D exterior derivative 
x y zdx dy dz   , this may be decoded in the 

following manner, 

   

 
0 0

t t

t t

t

dF d dt E dt d dt B

dE dt E dt dt dB B dt

dE B dt dB

        

         

    

 

   ;   

   

 

t t

t t

t

free free

dG d dt H dt d dt D

dH dt H dt dt dD D dt

dH D dt dD

J 

         

          

     

    

Given an operator   that, in 3D, converts a  1-form into a 2-form (its dual) and vice versa, 

the substitutions H B   and D E   may be made, but this still leaves us with two 

separate equations. 

3.3 David Hestenes 

More recently, David Hestenes [39; 40] and others began promoting geometric algebra, 

reviving the 19
th

 Century work of Hermann Grassmann and William Clifford. This concept 

provides an equally powerful counterpart to differential forms and embodies some of the 

useful features of quaternions, for example, inverses. A geometric algebra is a vector space in 

which the roles of second rank skew-symmetric tensors and differential 2-forms are both 

replaced by, the bivector, a single entity formed by the direct multiplication of two 

orthogonal vectors. This is in strict contrast to the quaternions where such a product 

effectively reverts to a vector.  As there is no need to continually refer to some assumed 

spatial frame such as  ˆ ˆ ˆ, ,x y z , geometric algebra provides a versatile coordinate-free 

approach. This means that rather than effectively being labels for ordered components, 

symbols such as E and  actually stand for the vectors themselves. Nevertheless, we may 

still express these vectors as ˆ ˆ ˆ
x y zE E E  E x y z  and ˆ ˆ ˆ

x y z     x y z , or in terms of 

whatever other basis we may find convenient.  

The geometric algebra formalism of multivectors allows for a graded hierarchy of entities 

called n-vectors, where a 0-vector is a scalar, a 1-vector is the familiar sort of vector, a 2-

vector is a bivector, and so on. It is a key feature that different grades of n-vector may be 
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added as well as multiplied, resulting in what is generally a multivector of mixed grade. In 

order to distinguish them from the usual 3D vectors, we will write general n-vectors and 

multivectors in bold italic, e.g. ,u v and so on. By the basic rules of geometric multiplication, 

the product uv  resolves into the scalar u v  plus the bivector u v . Note that the wedge 

symbol   used in differential forms conveys a similar idea. For 3D vectors, I  u v u v  

where ˆ ˆ ˆI  xyz   is a 3-vector referred to as the unit pseudoscalar. While I takes a role 

analogous to the imaginary unit j, it has the additional property that when it multiplies a 

vector it creates a bivector. In this fashion, therefore, I       uv u v u v u v u v , which 

leads us straight to 

  
 

0

1 1
t

I

Ic
c




   

  

E E E

B

  

       and       

  2

0
1

t

Ic Ic I c

Z
c

   

   

B B B

J E

  

  where 0
0

0

Z



  

Since the addition of different grades is permitted, we find that we may put both of these 

results together so as to render Maxwell’s equations in free space as a single ‘(3+1)D’ 

equation
*
 

  t  F J  (14) 

in which the entire electromagnetic field is expressed as the multivector Ic E BF , and 

likewise the total electromagnetic source density is expressed as the multivector 

0
0

1 Z  JJ . 

We can go on to define an auxiliary electromagnetic field, 0
0

1 IZ D HG , the role of 

which is the macroscopic treatment of physical media. Maxwell’s equations then become [41, 

§5.9] 

 
 

 
0,1

0,1
0

free

t

t I

  

  

G J

F




 

(15) 

The subscripts 0,1 on the  angled brackets indicate that only the 0- and 1-vector (scalar and 

vector) grades are to be taken from the result of the enclosed expression (
0

.. and 
1

..  are 

directly analogous to Maxwell’s S. and V.). There are other ways of writing this, but none in 

which the electromagnetic field quantities are represented only in terms of the entire fields F

and G . 

In spacetime, however, we get a similar but far more effectual expression of these equations, 

namely 

                                                 
*
   Hamilton gave the interpretation (3+1)D for a quaternion such as t  r , the sum of scalar time with 

a vector position  
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0

free

F

G J

 

   

(16) 

(it should be noted here that the use of bold symbols is usually dropped with these spacetime 

quantities). Since time is now embodied as a vector in this 4D space,   is now equivalent to

1
x y z tc

      x y z t
 
in which x, y, z and t are the unit basis vectors of some spacetime 

frame. Although freeJ , F and G retain similar physical definitions to their 3D mixed-

multivector counterparts, freeJ  is now a pure vector and F and G are both pure bivectors. 

Electric and magnetic fields are now just the timelike and spacelike
*
 parts of the same 

bivector field, i.e. of F or G as appropriate, and because Equation (16) works in any inertial 

frame, it is essentially covariant.  

When all is stripped back to a fundamental setting devoid of phenomenological 

representations for physical media, the auxiliary fields vanish and Maxwell’s equations are 

once again a single equation 

 F J   (17) 

in which J now comprises all sources of charge and current. This equation is simplicity itself. 

Also covariant, it defines an important class of equation that stems from concepts that seem 

more abstract than physical. In the more familiar case of complex functions in 2D, 0F   

corresponds to the pair of Cauchy-Riemann conditions 0x x y yF F    and 0x y y xF F   , 

meaning that F must be an analytic function with singularities wherever 0J  . In spacetime, 

where there are two extra dimensions, solutions of 0F   are called meromorphic functions, 

but otherwise the situation is analogous to 2D. Finally, since all non-null vectors in a 

geometric algebra have inverses, we may write down a particular solution of Equation (17) in 

closed form, as simply  

 
1F J   (18) 

where 
1  turns out to be an integral operator with a time-dependent Green’s function as its 

kernel. 

4 VARIATIONS  

4.1 The Integral Equations 

While we normally think of Maxwell’s equations as differential equations, as we saw in §3.2 

their treatment in terms of differential forms leads directly to a set of integral equations.  The 

integral form is also well known in standard vector analysis [14, pp. 194-6; 34, §1.4; 41, §3.4; 

42, ch.1].  

                                                 
*
 A bivector U is timelike if the sign of †UU  is of the same as 

2
t  , but for a spacelike bivector it is just 

the opposite. 
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
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H
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A

l
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 (19) 

Here the surface S completely encloses a volume V, whereas the path P completely encloses 

an area A, and dA  and dl  are orientated infinitesimal elements of S and P respectively. The 

magnetic flux  passing through A is then given by 
S

d B A while the displacement current
 

dispI  is given by 
t S

d  D A .  These equations are perhaps most useful as a way of expressing 

the physical laws of electromagnetic theory. They have a direct and obvious correspondence 

to Equations (12) and (11) of differential forms, but in geometric algebra the inner products 

in the first and last equations change to outer products so to maintain the appropriate grades 

[41, §3.5]. 

4.2 Other Ways of Writing the Standard Form  

Just how unique is the set of Maxwell’s equations as expressed in (1)? There are undoubtedly 

other ways of writing them which work just as well [2, §4], but Equations (1) are unique to 

the extent that no constants are required, nor is there any reference to the bound sources that 

arise from the electric and magnetic polarizations P and M. However, this situation is quite 

arbitrary, for the vanishing of the constants is due to the choice of units, and Equations (1)i 

would allow us to switch from the variables D, B, E and H to P, M, E and B, or even to P, 

M, E and H, and so on. Maxwell may have set some sort of precedent when he wrote D E 

but, as an enthusiast of molecular theory, it is very likely that he would have brought in P had 

the microscopic nature of dielectrics been properly understood at that time. He could then 

have considered D to be redundant, or at best auxiliary, for it is P that has a tangible meaning 

directly associated with the state of individual molecules. It would have been just as easy for 

him to write P E  as it was to write D E (in whichever algebraic form). Therefore, had 

P and M been preferred over D and H, the equations would have come down to us as 

 

 

0

02

0

0

1

free

t

free

t tc

 



   

 

   

      

E P

B

E B

B E J M P

 





 

 (20) 

While these may seem to be less succinct, no separate constitutive relations are required. 

Moreover, they are just as workable as Equations (1), which simply tidy things up a bit by 
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replacing two divergences, two curls and two derivatives with just one apiece. In particular, 

in the context of media with linear polarisabilities, the differences all ‘come out in the wash’. 

In particular, if we put P E  and M B  into Equations (20), we get 
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  (21) 

The usual form is therefore restored by replacing 0   with   and 01    with 1  .  

However, the fact that the ‘usual’ form is regarded as being ‘usual’ is clearly a matter of 

convention rather than necessity. Besides, Equations (20) are manifestly applicable to free 

space (no substitutions required) for here the polarizations simply vanish, giving 
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 (22) 

This set is also applicable in a microscopic treatment of media because in this situation bound 

charge, rather than being eliminated from the total charge, is embodied within it on a 

molecular basis. An entirely separate observation about the form of Equations (20)–(22) is 

that all the sources have been placed on the right-hand side whereas all the fields are on the 

left-hand side, a convention that some people prefer because it clearly separates the 

dependent and independent variables. This is not entirely pedantic – for one thing it avoids 

confusing 0 t  E , the vacuum contribution to the displacement ‘current’, with a real current 

density such as the polarization current t P  [43]. 

In the case of the free-space equations, rather than taking E and B as being the principal 

fields, some writers advocate keeping D and H in the inhomogeneous equations as excitations 

arising from the sources, as distinct from the field strengths E and B [44].  It has also been 

commonplace with some writers to take E and H or even, as Lorentz did, d and h. This is 

encouraged by the fact that in free space we can exchange D with 0 E  and 0 H  with B. In 

some instances the justification for doing so is the availability of convenient units, e.g. A/m 

rather than T. In some other systems, however, the units are the same, so that the exchange is 

all too easy. While such variations are understandable in a historical context, in the present 

day it should be understood that Equation (1)ii differentiates E from D and B from H; 

consequently, when it comes to the fundamental equations in free space we should use 

Equations (22) which are in terms of E and B alone. For example, it is never wrong to say 
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0 B , whereas a statement such as 0 H  may well become a nonsense if transposed 

to the case of physical media. The Chu formulation of electrodynamics [42], by adhering to 

the use of E and H even in the Lorentz force, causes some difficulties in this respect [45].  

4.3 Back to Quaternions  

But quaternions have not, as Gibbs and Heaviside may have wished, been altogether 

consigned to the dust. In particular, there has been recent interest in the application of 

biquaternions (also known as complex quaternions or octonions) to electromagnetic theory 

[46]. In the original quaternion theory Maxwell’s equations in free space reduce to a pair,  
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 (23) 

This is similar to the result we obtained with geometric algebra, but prior to combining E and 

B as a multivector. This suggests that if we were to combine E and B as the complex 

quaternion, jc E BF , a further degree of compactness may be possible. Indeed, 

Maxwell’s equations in free space are rendered as a single equation that closely parallels the 

(3+1)D multivector form they take in a 3D geometric algebra, Equation (14). Simply by 

adding the first row in Equation (23) to j times the second, we obtain 
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Note that in free space 0t
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F  leads to a wave equation because, instead of the 

customary vector rule 
2 2   , with quaternions 2 2 2 2 2

x y z       , which leads to 
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5 CONCLUSION 

While we have covered some 24 versions of Maxwell’s equations that have come down to us 

over the years as a result of both evolutionary progress and new directions, these represent 

only those that are close to the mainstream.  The version that we commonly see today in 

Equations (1) differ from Maxwell’s original form, as represented in Equations (2) and 

Figures 1-3, only in some minor respects, mainly in that he employed 

 Less sophisticated mathematics 

 The vector and scalar potentials, and 

 The constitutive relations D E and B H . 



THE EVOLUTION OF MAXWELL’S EQUATIONS FROM 1862 TO THE PRESENT DAY 

IEEE Antennas and Propagation Magazine , 55(3)   27 
 

Even if it may seem obscure, the quaternion mathematics he used in the Treatise, Equations 

(3), is equivalent to, and no less sophisticated than, today’s vector analysis. By this time he 

had also brought in  0 B H M , and the fact that he still used potentials amounts only to 

a different way of expressing things.  The changes since then have therefore been due to 

 Developments in the mathematical languages of physics 

 Advances in knowledge, particularly concerning the nature of electrical charge and the 

distinction between polarization and electric displacement 

 Refinement of his equations into a basic set comprising Equations (1)–(1)ii, the first 

group of which we now regard as being Maxwell’s equations. 

The direct path of development of the equations was 

 1862, Maxwell’s first formulation of his equations based on a molecular vortex model 

 1864, his new field-based formulation of them for the Dynamical Theory 

 1873, his subsequent introduction of vectors and quaternions in the Treatise  

 1885, Heaviside disposing of quaternions and potentials and using his vector analysis to 

re-formulate Maxwell’s quaternionic equations  

 1902, Lorentz setting down the basic microscopic equations and then using his electron 

theory to derive the usual set of four macroscopic equations. 

Others contributed, notably  

 Hamilton, who discovered quaternions, and Tait who promoted them 

 Gibbs, who independently developed vector analysis, and Wilson, who later published it.  

 The Maxwellians, who, along with Boltzmann and Fӧppl, championed and disseminated 

Maxwell’s work  

 Niven and Thomson, who edited the second and third editions of the treatise and did 

much to clarify it and amend errors  

 Hertz, who produced a clarified version the equations and validated the revolutionary 

prediction of Maxwell’s theory  electromagnetic waves that travel with the speed of 

light. 

As to the other and more recent ways of writing Maxwell’s equations, it is clear that special 

relativity has made a major impact
*
. But contrary to the situation with Newtonian mechanics, 

this has not meant that the existing equations have had to be either rewritten or treated as 

approximations for, quite remarkably, they still stand as they were.  Rather, it has provided a 

whole new approach that has led to a better understanding of the foundational principles of 

                                                 
*
 By virtue of the correspondence principle, Maxwell’s equations are also compatible with elementary 

quantum mechanics, in which a key difference is that the electromagnetic field becomes quantized in 

the form of photons that exhibit both particle-like and wave-like characters. This discovery resolved 

the dichotomy between the wave theory of light, advocated by both Robert Hooke and Christiaan 

Huygens, and the particle theory advanced by Sir Isaac Newton (Hooke’s arch rival). 
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electrodynamics. It is also clear that several different mathematical structures may be used to 

express the same physical laws: vectors, tensors, quaternions, differential forms, geometric 

algebra and biquaternions. However, when it comes to seeking the most succinct way of 

encoding the fundamental equations, it is perhaps unsurprising that there seem to be strong 

parallels between the available structures. While there can be no single mathematical 

platform to suit all users and all purposes alike, such parallels tend to suggest that these 

different formalisms are simply alternative ways of invoking the same underlying physical 

principles and relationships. If, however, we were to consider brevity worthy of special merit, 

James Clerk Maxwell would surely have been impressed by the free space Equation (17), 

F J  , together with the Lorentz force cast as f qυ F  .  

Ultimately, the form taken by the equations is clearly far less important than their underlying 

meaning, the essential core of which, at least, must be independent of how the equations 

themselves are expressed. Therefore, in spite of all the variations, modifications and 

developments, we must give Maxwell himself the credit for successfully gathering together 

and setting down the foundations of electromagnetics in terms of equations, albeit in a now 

unfamiliar form. In so doing, his signal achievement was the establishment of the first viable 

theory of all electromagnetics as a field theory. When early adopters such as the Maxwellians 

began communicating and clarifying the theory, it rapidly gained supremacy over ideas of 

action at a distance, and by the closing decade of the 19
th

 century it was all but universally 

accepted.  

6 ADDITIONAL SOURCES OF INFORMATION 

Histories concerning the development of electromagnetics and Maxwell’s equations, 

 [22-24, 47-61]  

Information about Maxwell’s equations in various forms, including relativistic, 

 [38, 62-66] 

Vector analysis, differential forms and geometric algebra, 

 [62, 67-72] 
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